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Abstract
This paper tackles the problem of corpus based ToBI symbol
automatic identification. We focus on the binary decision of ac-
cent vs. no accent tone presence. We test a cross-lingual alter-
native to identify accents in a given language using supervised
data learning tools trained with data of a different language. A
multilayer perceptron and a C4.5 decision tree have been trained
with the English Boston Radio News corpus and we test its ca-
pabilities on predicting accents in a Spanish corpus. Results are
promising leading us to discuss on the application of previous
work on ToBI accents multiclass classification.
Index Terms: prosody, ToBI, crosslingual, automatic recogni-
tion of prosody

1. Introduction
ToBI is a standard for representing and labelling prosodic events
including tones (accent tones and boundary tones) and breaks.
The tones level is used to mark the occurrence of phonological
tones at appropriate points in the F0 contour. The break level is
used to mark break indices, which are numbers representing the
strength of the boundary between two orthographic words. The
tones codification is based on the combination of two single
symbols: H (high) and L (low). One of the most important
prosodic features is prominence: a word or part of a word made
prominent is perceived as standing out from its environment [1].
This paper focuses on this particular aspect of prosody that is
also marked in the ToBI prosodic representation model[2].

ToBI has been implemented for several languages including
English, German and Japanese. Despite the intesive research
activity for Iberian languages; the need of a reference corpus
similar as the ones existing for other languages (e.g. the Boston
Radio Corpus for English [3]) is still a need both for Catalan
and Spanish. The activity presented in this paper is included
in the Glissando project1, that has the aim to record and label
with ToBI marks a bilingual Spanish and Catalan corpus that
contains Radio news recordings and spontaneous dialogs.

Labelling a corpus with ToBI tags is an expensive proce-
dure. In [4] it is estimated that the ToBI labelling commonly
takes from 100-200 times real time. To speed up the process,
automatic or semiautomatic methods seem to be a productive
resource. [5] or [6] are good examples of the state of art on
automatic labelling of ToBI events. For Catalan [7] presents a
procedure to label break indices reducing the set of break in-
dices merging together some of them with the aim to increase
the identification results. This merging strategy is common in
other studies such the ones already mentioned of [5] or [6] that
combine the different type of accent tones transforming the la-
belling problem into a binary one to decide whether an accent
is present or not.

1Partially funded by the Ministerio de Ciencia e Innovacion,Spanish
Government Glissando project FFI2008-04982-C003-02

Here we explore a cross-lingual approach where a given
corpus with ToBI labels will be used to predict the labels of a
different corpus in a different language. Despite the ToBI se-
quences are highly dependent on the language, they codify uni-
versal functions of prosody, one of them the prominence. Thus
we use the Boston Radio Corpus to train prosodic models that
are used then to identify the prominence in a Spanish corpus.
This cross-lingual approach is pertinent as the number of lin-
guistic resources with ToBI labels is sparse and the number of
languages that lack of this information is large.

In [8] we point out data sparseness, the high inter-symbols
similarity and the large number of prosodic features potentially
affecting prosodic profiles as the main difficulties for ToBI la-
belling automatic approximations. Here we add the normaliza-
tion of the prosodic features as the challenging problem to cope
with.

First we present the experimental procedure and then we
present the results on crosslingual accent identification. Dis-
cussion of the future work to extend the approach to different
accent type is then presented.

2. Processing of the corpus
We used the Boston University Radio News Corpus [3]. This
corpus includes labels separating phonemes, syllables and
words. Accents are marked with a ToBI label and a position.
We take into account the 7 more frequent types of accent tones:
H*, L+H*, !H*, H+!H*, L+!H*, L*, and L*+H discarding other
undetermined marks like * or *?. Inspired in previous works
[9, 5] we aligned the accent tones with respect to the prominent
syllable and to the word that contains it (words with more than
one label are discarded in this work). All the utterances in the
corpus with TOBI labels, from all the speakers (f1a, f2b, f3a,
m1b, m2b and m3b) have been used, as shown in table 1.

The Spanish corpus used in this paper is ESMA-UPC.
It was designed aiming the construction of a unit concate-
native TTS system for Catalan and Spanish at the UPC
(http://www.gps-tsc.upc.es) [10]. It contains three hours record-
ings of spoken utterances in both languages. Although it
was not specifically designed for prosodic studies, it contains
enough data to get significant results. The corpus was acquired
under recording studio conditions in two separate channels at
32 kHz. Speech was recorded in one of the channels and the
output of a laryngograph in the other. Data were automatically
labelled and manually supervised. Labelling included silences,
allophonic transcription, and allophonic boundaries. This in-
formation was increased by the additional syllable and word
boundaries and stress positions. Pitch was estimated by means
of glottal pulses closing time points. It eases the automatic seg-
mentation of stress groups and the selection of the correspond-
ing F0 profiles. Figure 2 resumes the figures of this corpus.

Similar features to other experiments reported in the bib-
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word syllable
# utterances 421 421
H* 7587 8098
L+H* 2383 2501
!H* 2144 2358
H+!H* 586 654
L+!H* 638 666
L* 517 548
L*+H 44 48
none 13868 32450
Total 27767 47323

Table 1: Accent events in the Boston Corpus
# utterances 421

# accent groups
Accent 7587
No accent 2383
Total 9970

Table 2: Accent events in the UPC-ESMA Corpus

liography [5] have been used. They concern to frequency:
within word F0 range, difference between maximum and av-
erage within word F0, difference between average and mini-
mum within word F0, difference between within word F0 av-
erage and utterance average F0; to energy: within word energy
range, difference between maximum and average within word
energy, difference between average and minimum within word
energy; to duration: maximum normalized vowel nucleus dura-
tion from all the vowels of the word (normalization is done for
each vowel type); and to grammatical information POS: part of
speech.

3. Experimental procedure
3.1. Experimental strategy

We used two different classifiers, a C4.5 Decision Tree (DT)
and a Multilayer Perceptron (MLP) Neural Network (NN), ap-
plying stratified 10-fold cross-validation. Details on the classi-
fiers are depicted in section 3.3

First, the Accent vs No Accent classification problem (the
most classical one in the literature) was approached. The goal
is to contrast our systems with the state of the art. Next the
more complex multiclass accent type classification problem was
approached.

Once shown the trouble of the multiclass problem (high er-
ror rates in accent recognition) we focused on the data analysis,
previous to continue with the classification problem. A contrast
in pair of accent types was performed by applying the classi-
fier to the easier task of binary classifications for every pair of
accents. The goal is to identify similar classes as a source of
confusion in the multiclass problem. Multidimensional scaling
[11] is used to display these inter-class potential similarities.

3.2. Data preprocessing

Some classifiers can not handle qualitative features as the POS
ones. We transformed them into quantitative characteristics by
using two approaches: binary masks (one bit per POS type);
and codification of the 33 values using 6 bits.

Due to the different range of the features, we applied dif-
ferent normalization techniques: the Z-Norm, Min-Max, divide

by maximum and euclidean norm 1.
The approaches proposed for dealing with the imbalanced

data can be divided into internal and external ones, i.e., at al-
gorithmic and data level, respectively [12]. In the first, new al-
gorithms or modifications of existing ones are proposed. In the
second, the data sets are re-sampledover-sampling the minor-
ity class orunder-sampling the majority class. Both options
can be accomplished randomly or directed. We are interested in
general solutions, so only external solutions have been applied,
more specifically, re-sampling method based on minority class
example repetition has been performed.

3.3. The classifiers

The Weka machine learning toolkit [13] was used to build C4.5
decision trees (J48 in Weka). Different values for the confidence
threshold for pruning have been tested, although the best results
are obtained with the default value (0.25). The minimum num-
ber of instances per leaf is also set to the default value (2). This
classifier was trained with un-normalized data and qualitative
POS feature.

A Multilayer Perceptron (MLP) is trained per each classifi-
cation problem, using the Error Backpropagation learning algo-
rithm. Non-linear sigmoid units are used in the hidden and out-
put layers because they showed better performance thantanh

ones in our experiments. Several network configurations were
tested to define the final MLP configuration: i) single hidden
layer, ii) training epochs equal to 100, iii) although Gori [14]
has demonstrated that only using more hidden units than inputs
the separation surfaces between classes in the pattern space can
be closed, the results showed that using more than 16 hidden
units is not worth it, iv) as many units as classes are used in the
output layer, one per each class to classify.

To train the MLP unsaturated desired outputs [15] were
tested. The chosen ones, however, were 1.0 for the output cor-
responding to the training vector class and 0.0 for the rest, since
a better performance was achieved.

Although the assumptions to approximate the MLP output
to a posteriori probability are not fulfilled [15], given a test vec-
tor xi, each output of the MLP, trained to distinguish betweenn

classesCj , can be seen as the estimation of the membership de-
gree,Γ(Cj/xi), of vectorxi to classCj . Then, the input vector
is assigned, in accordance with this probabilistic output inter-
pretation, as follow:xi ∈ Cj with j = arg max

j
Γ(Cj/xi). If

all the outputs have the same value, that is very rare, the input
is assigned to the most probable class, i.e., the largest.

The codification alternative showed better performance to
transform the POS feature (besides, the input vector is smaller).
Z-Norm was the chosen to normalize the feature ranges, since
it showed the best performance.

4. Results
When the classifiers are applied to theAccentvs No Accentbi-
nary decision, results are close to the expected according to the
state of the art: we achieved 84.7% with NN and 82.7% with
DT. [6] summaries the state of the art up to date reporting re-
sults from 75.0% to 87.7%. These results have been obtained
using the Boston Radio Corpus using all the input features men-
tioned in the last paragraph of section 2.

When we change to cross-lingual scenarios, first limitation
is that not all the prosodic features are immediate to be used. For
example POS Tags can be highly dependent on the language.
We decided in this preliminary approach to make use of the F0
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f0_minavg_diff <= 17.9909
|   f0_range <= 8.9: none (4224.0/373.0)
|   f0_range > 8.9
|   |   e_maxavg_diff <= 792.058: none (6008.0/1616.0)
|   |   e_maxavg_diff > 792.058
|   |   |   e_maxavg_diff <= 1054.15: none (2186.0/924.0)
|   |   |   e_maxavg_diff > 1054.15: accent (1916.0/874.0)
f0_minavg_diff > 17.9909
|   f0_avgutt_diff <= -28.3332
|   |   f0_minavg_diff <= 52.6954: none (1297.0/389.0)
|   |   f0_minavg_diff > 52.6954
|   |   |   e_maxavg_diff <= 965.426
|   |   |   |   f0_avgutt_diff <= -35.3209: none (166.0/64.0)
|   |   |   |   f0_avgutt_diff > -35.3209
|   |   |   |   |   e_range <= 1123.68: none (25.0/9.0)
|   |   |   |   |   e_range > 1123.68: accent (85.0/23.0)
|   |   |   e_maxavg_diff > 965.426: accent (272.0/52.0)
|   f0_avgutt_diff > -28.3332: accent (11588.0/2388.0 )

Figure 1: Decision tree C4.5. Simplified version with pruning
confidence of 0.001 (default is 0.25)

Classified as –> Accent No Accent

Accent 1698 634
No Accent 616 1698

Table A
Classified as –> Accent No Accent

Accent 1663 669
No Accent 564 1750

Table B

Table 3: Classification results using the C4.5 decision tree. Ta-
ble A uses input features of frequency and energy. Table B only
uses F0 features.

and energy features.
Second difference with respect to the mono-lingual sce-

nario is the need to normalize the input features. Figure 1 shows
the simplified decision tree resulting when the algorithm is feed
with not normalized data. Despite the features are relative only
the F0 features would support a comparison between corpora
and speakers. Energy features are still highly dependent, not
only on the speaker, but also on recording conditions. A change
on the energy scale between corpora would affect dramatically
results. The data in Boston Radio Corpus and in ESMA-UPC
have been normalized separately using the same z-norm.

Table 3 shows the confusion matrix using normalized fun-
damental frequency features and energy when the decision tree
is trained with the Boston Radio Corpus and tested with the
ESMA-UPC corpus. Despite the most relevant set of features
seems to be the one relating to F0, energy seems to have a rol to
take into account.

Table 4 compares recognition rates in pairs of corpus.

Modelling-Testing corpora Accent No Accent

Boston-Boston 73.4% 76.7%
ESMA-ESMA 80.6% 72.1%
Boston-ESMA 75.6% 71.6%
ESMA-Boston 75.1% 73.4%

Table 4: MLP Neural Network classification rates results. Input
features correspond to F0 and energy features.

When the pair modelling-testing correspond to samples of the
same corpus, results are better. Nevertheless, the figures cor-
responding to cross-lingual experiments are not far away from
the mono-lingual ones and are encouraging to make use of other
features relating to duration or to grammar to increase the iden-
tification results.

No Accent classification seems to be more difficult in the
ESMA corpus than in the Boston one (72.1% and 71.6% versus
76.7% and 73.4%). This is because the ESMA corpus is divided
into stress groups not in words. The first word (in any) of the
stress group is un-stressed by definition, so that there is an im-
portant number of words that would belong to the No Accent
category that would be identified easily by the classifier.

5. Discussion and future work
In [8] we show the importance of the proper selection of the
input feature in order to improve result by entering a more ex-
pressive parameterization technique based on the use of Bzier
functions [16]. When we perform multiclass classification with
the data of the Boston Radio Corpus results dramatically de-
crease (see table 6). Nevertheless, the table 5 shows the clas-
sification rates for every pair of classes. The use of the Bézier
coefficients outperforms the results in both classifiers. Although
in theAccentvs No Accentthe improvement is very low, in the
multiclass and in the pairwise classification problem the use of
Bézier coefficients permits to improve results. For example !H*
increases its rates from 18.7 to 29.3 in multiclass classification,
and it also increases its performance with respect to all the other
classes in the pairwise classification problem. In this paper we
made use of a set of features getting inspiration from other state
of the art studies, but a deeper analysis and the test of alternative
features seems to be a need.

The significant differences between the two type of classi-
fiers opens the door to an alternative research such as the use
of expert fusion. By combining results of different classifiers or
by specialising experts in different type of accents we expect to
improve the performance.

In this work we focus on the binary accent vs. no accent
problem. The questions arising at this moment is weather is
possible or not to extend this approach for the recognition of
different ToBI accent. The immediate answer is no, and rea-
son is that ToBI sequences are highly language dependent. Fur-
thermore, ToBI identification results in the corpus are still very
poor. Finally, the high level of inconsistency in labellers tag-
ging for the case of Sp-ToBI[17] does not encourage to explore
this possibility.

6. Conclusions
We have presented a cross-lingual experience on ToBI accent
identification. The two corpora used have been presented and
the experimental strategy has been described. Results indicate
that this is a promising alternative to analyze in deeper detail in
future work.

Related work [8] has shown us the difficulties of doing mul-
ticlass ToBI accent classification, but we have also learn the fu-
ture work to be done to cope with data sparseness: using more
expressive prosodic features and using more powerful learning
tools and strategies.

7. References
[1] J. Terken, “Fundamental frequency and perceived prominence,”

Journal of Acoustics of America, vol. 89, no. 4, pp. 1768–1776,

FALA 2010 - VI Jornadas en Tecnología del Habla and II Iberian SLTech Workshop

-73-



(a) MLP Neural Networks
H* L+H* !H* H+!H* L+!H* L* L*+H none H* L+H* !H* H+!H* L+!H* L* L*+H none

H* 60,7 59,8 77,8 66,7 85,8 98,6 86,8 H* 67,1 64,8 84,2 72,1 93,4 99,0 85,0

L+H* 59,0 71,0 77,7 64,6 83,4 96,7 86,6 L+H* 60,8 72,8 85,5 65,8 92,8 97,8 87,3

!H* 65,4 68,4 71,7 59,5 77,8 96,5 85,5 !H* 65,5 74,2 77,9 65,9 86,7 97,8 84,0
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Table 5: Accuracy (in %) of the pairwise classifiers using neural networks (a) and decision trees (b). In both cases, individual class
success rate is shown. Tables on the left show results without Bézier coefficients and the ones on the right with Bézier coefficients.
Positioni, j of the table represents the success rate of the classi in the classifieri vs. j.

C4.5 DT MLP NN
Acc Type NBez Bez NBez Bez

H* 44.4 45.5 21.5 22.1
L+H* 22.7 25.6 35.4 41.0
!H* 18.1 21.9 18.7 29.3
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none 75.3 75.5 68.3 68.2

Acc-NoAcc 82.6 82.7 83.0 84.7

Table 6: Accuracy (in %) of the Decision Trees (columnC4.5
DT) and Neural Networks (columnMLP NN) in the multiclass
accent type and accent vs. no accent (last row) recognition
tasks, when the B́eziers coefficients are used (columnBez) and
not used (columnNBez).
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