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Abstract

Evaluation of prosodic quality is always a challenging task due
to the nature of prosody with multiple form-function valid pro-
files. When voice of people with Down syndrome (DS) is ana-
lyzed, diversity increases making the problem even more chal-
lenging. This work is framed in our activities for developing
learning games for training oral communications of people with
intellectual disabilities. In this context automatic evaluation
of prosodic quality is a must for deciding whether game users
should repeat activities or continue playing and to inform ther-
apists about the particular difficulties of users. In this paper we
present a procedure for the selection of informative prosodic
features based on both the distance between human rated right
and wrong productions and the distance with respect to pro-
ductions of typical users. A main contribution with respect to
previous works stems from the use of mixed models to rate the
impact of the type of activity and speaker dependence when es-
timating the quality of the prosodic productions.
Index Terms: Down syndrome speech, Computer Assisted Pro-
nunciation Assessment.

1. Introduction
Prosody is an important component of speech communication
because it is responsible for fundamental functions such as
grouping linguistic units, pausing, word accent and sentence
purpose (declarative, interrogative, exclamatory or imperative)
and also other higher level functions like emotions and prag-
matics [1]. The low control of prosody or its inappropriate pro-
duction can stigmatize speakers and limit their options to get
integrated in society [2]. Such could be the case of people with
intellectual disabilities in general and speakers with Down syn-
drome (DS) in particular, which is a population characterized
by special needs on language control and prosodic production
(with notable exceptions) [3, 4, 5]. As far as prosody is con-
cerned, Kent and Vorperian [4] report disfluencies (stuttering
and cluttering) and impairments in the perception, imitation and
spontaneous production of prosodic features; while Heselwood
et al. [6] have connected some of the speech errors with dif-
ficulties in the identification of boundaries between words and
sentences. In previous work we empirically showed the clear
contrast between the voice of speakers with Down syndrome
and typical speakers by performing perceptual and automatic
identification tests from signal [7].
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In [8] we took a step forward to analyze the possibilities to
assess DS voice oral productions quality by using a similar pro-
cedure. While the problem of DS voice identification reached
more than 90% accuracy with an SVM classifier [7], the prob-
lem of quality assessment reached only about 78.5% using the
same type of classifier and the same training feature set. In
this paper we analyze the training data used in the mentioned
previous works to understand the reasons for this classification
performance differences at the time that results give cues for
exploring different paradigms in future works.

Software tools and learning games have been devised for in-
tellectual disabled people to train specific competences [9, 10,
11, 12]. There are methods that voice therapists employ with
speakers with specific speech problems [13]. Some of these
methods, partially, have been implemented as software tools
that help therapists to work with their patients or allow patients
to carry out complementary exercises in an autonomous way
[14]. In [15] we presented a tool to train prosody and pragmat-
ics for speakers with DS. A set of perceptual and production ac-
tivities are interleaved in a graphic adventure video game with
an adapted interface that takes into account the special charac-
teristics of individuals with Down syndrome: poor short term
memory [16], attention deficits [17], problems to integrate in-
formation and deficits of language development [18]. So far,
the video game has been used successfully with real users, with
the assistance of an adult (the teacher, the therapist or a rela-
tive). The use of the tool has allowed the recording of a speech
corpus of people with Down syndrome. The final goal of the re-
search presented in this paper is the analysis of the potential of
these recordings to train an automatic assessment system. In the
medium term, this system will be integrated into the video game
to allow users to train autonomously. A complete description of
oral activities can be found in [19].

There are several works on automatic assessment of speech
quality in atypical voices described in the literature [20, 21, 22].
However, in computer assisted pronunciation training, not only
assessment is important, but also reporting information about
the reasons that led the system or the expert to judge a given
utterance as correctly or incorrectly produced. In [23] authors
analyze how different components of speech production impact
speech intelligibility in DS. In this paper we systematically an-
alyze the prosodic features of the utterances of the corpus in or-
der to select the most informative features and their values for
predicting oral productions quality. To perform this analysis,
we triangulate information obtained from the distances between
right and wrong DS productions (at the glance of human eval-
uators) with information obtained from distances between DS
productions and productions of typical users. We then impose
the requirements of separation between groups and consistency.
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In a second step, by using logistic mixed regression models, we
find that features related to temporal domain are more efficient
for this task than other prosodic features related to F0 or en-
ergy. In addition, we provide evidences that it is important to
consider not only the speaker (already shown in [8]) but also
the particular training activity for improving the accuracy of the
automatic assessment system.

The structure of the paper is as follows. The experimental
procedure section details the corpus compiled and the manual
evaluation of the utterances. The procedure for the individual
analysis of the different prosodic features is also presented. The
results section lists the selected prosodic features and its capa-
bilities for modeling the quality of the utterances taking into
account human scores. We end the paper with a discussion that
includes limitations, future work and conclusions.

2. Experimental procedure
2.1. Corpus recording

The corpus was recorded by using a graphic adventure video
game [15] that requires users to perform a set of activities re-
lated to prosodic perception and production skills in order to
continue playing. All the oral productions and user interactions
are recorded and classified per activity and speaker while the
user is playing. The current corpus has been compiled in dif-
ferent sessions. It has recordings of 23 speakers with Down
syndrome, 966 utterances of 40 different production activities,
which is about 1 hour and 10 minutes duration. More details
about gender, age and metal capabilities can be found in [8].
From this work we select those 5 speakers with more than 40
utterances each (606 utterances in total), with the aim of obtain-
ing representative results. We call this corpus θDS .

We used a second corpus of typical speakers to analyze
voice of speakers with Down syndrome when contrasted with
voice of typical speakers. This corpus contains a subset of the
sentences recorded by the speakers with Down syndrome and
has recordings of 22 speakers, with 250 utterances in total. We
call this corpus θTS (details about gender and age can be found
in that was used in [7])

The recordings of both corpora were made at 44,100 Hz
with a Logitech PC Headset 960 USB microphone.

2.2. Human based quality evaluation

Two complementary human based evaluations have been per-
formed:
Real-time evaluation: The production activities are assessed
in real time by a therapist, seated next to the player with a
secondary keyboard. The therapist can evaluate the activity as
Right (θR) or Poor (θP ) to let the player continue, depending
of the production quality, or as Wrong (θW ) to ask him/her to
repeat the utterance. The therapist is responsible to assess the
production of the gamer and the consequence is that the player
has to try again to pronounce correctly until the therapist con-
siders that he or she can continue playing. The real time scores
divide the corpus: θDS = θR ∪ θW ∪ θP .
Off-line evaluation: Each of the utterances was rated off-line
by an expert in prosody who participated in the design of the
video game. The judgments were binary, corresponding to the
decision of whether the utterance should be repeated or not. She
declared to use the following decision criteria, adapting them
to the specific activity proposed: adjustment to the expected
modality (intonation); preservation of the difference between
lexical stress (stressed vs. unstressed syllables) and accent (ac-

cented vs. unaccented syllables); and adjustment to the organi-
zation in prosodic groups and distinction between function and
content words (phrasing). The off-line scores divide the corpus
θDS = θR′ ∪θW ′ ; R’ indicating right and W’ indicating wrong
productions.

Both evaluations have been compared leading to consis-
tency rates going from 79.4% to 64.1% depending on the
speaker (doing R and P assignments equivalent to R′)

2.3. Processing and selection of prosodic features

The openSmile toolkit [24] was used to extract acoustic fea-
tures from each recording of the corpus. The GeMAPS feature
set [25] was selected due to the variety of acoustic and prosodic
features contained in this set: frequency related features, energy
related features and temporal features. The arithmetic mean and
the coefficient of variation along the utterance were calculated
on these features. Furthermore, 4 additional temporal features
were added: the silence and sounding percentages, silences per
second and the length mean of silences. These last 4 features
were calculated using the silences and sounding intervals gener-
ated by Praat software [26], which uses an intensity threshold, a
minimum silent interval duration and a minimum sounding in-
terval duration to identify these intervals (Praat default values
were used). In total, 92 features were used: 10 from frequency
domain, 10 from energy domain, 11 from temporal domain and
61 from spectral domain. The complete description of these
features can be found in [7].
As selection criteria we require the feature f to satisfy:

1. Separation: there must be statistical significant differ-
ences between the values of f in the groups θR and θW
(Mann-Whitney test with p-value<0.01) which implies
that clear differences between right and wrong utterance
are observed.

2. Consistency: being fT , fR and fW the mean value of
the feature f in the groups θTS (typical speakers), θR and
θW respectively, it must be satisfied that |fT − fR| <
|fT − fW | which implies that right utterances are closer
than wrong utterances to the typical ones.

We apply this procedure with both real-time and off-line eval-
uations. In the case of real-time evaluation the procedure is
repeated for every pair of groups. The comparison of results
obtained with both evaluations permits to discuss about the pos-
sible reasons for disagreement.

2.4. Analysis of the impact of features on quality

Logistic mixed effects regression models were used to measure
the impact of speaker and activity on the automatic assessment
of quality. This regression model takes into account that the I
observations came from A different activities and S different
speakers. The full model is given by

yi,a,s = β0 +A0,a + S0,s+

(βδ +Aδ,a + Sδ,s)Xi,a,s + εi,a,s
(1)

where β0 is the fixed intercept and A0,a and S0,s are the ran-
dom intercepts introduced by activity and speaker respectively;
Aδ,a, and Sδ,s are the random slopes to be added to the fixed
slope βδ . The most informative acoustic features are the fixed
effect and speaker and activity are the random effects. A bino-
mial distribution for y was used in order to build the logistic
regression models. Different configurations of the mixed model
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Table 1: List of the automatically selected frequency, energy and temporal features. All the features in columns Off-line evaluation
have statistically significant differences (Mann-Whitney test with p-value<0.01) between right and wrong productions of speakers with
Down syndrome. The asterisk in Real-time evaluation columns means statistically significant differences (Mann-Whitney test with p-
value<0.01) between first and third column (placed in the first column), between first and second column (when placed in the second
column) or between the second and third column (when placed in the third column). The meaning of the features can be seen in [7]. In
cells we present 95% confidence interval of the mean value. The units are reported in [24].

Off-line evaluation Real time evaluation
Typical DS Right DS Wrong DS Right DS Wrong DS Poor
speakers productions productions cont. prod cont. prod productions

F0 domain
f1 F0semitoneFrom27.5Hz sma3nz pctlrange0-2 (2.40, 2.88) (1.91, 2.67) (2.73, 3.66) (1.37, 2.23)* (2.08, 3.03) (3.48, 4.74)*
f2 jitterLocal sma3nz stddevNorm (1.11, 1.21) (1.32, 1.43) (1.52, 1.66) (1.35, 1.48) (1.39, 1.56) (1.40, 1.55)
Energy domain
e1 loudness sma3 percentile20.0 (0.91, 1.01) (0.71, 0.78) (0.63, 0.71) (0.65, 0.72) (0.72, 0.84) (0.67, 0.77)
Temporal domain
d1 loudnessPeaksPerSec (5.64, 5.89) (4.10, 4.32) (3.76, 4.05) (4.23, 4.49)* (3.80, 4.14)* (3.61, 3.92)
d2 StddevVoicedSegmentLengthSec (0.14, 0.16) (0.18, 0.23) (0.25, 0.33) (0.20, 0.26) (0.20, 0.28) (0.19, 0.27)
d3 soundingPercentage (0.88, 0.91) (0.89, 0.91) (0.73, 0.79) (0.88, 0.91)* (0.82, 0.88) (0.74, 0.81)*
d4 silencesPerSecond (0.35, 0.44) (0.28, 0.35) (0.52, 0.63) (0.35, 0.44)* (0.36, 0.50) (0.45, 0.58)
d5 silencesMean (0.14, 0.19) (0.13, 0.18) (0.31, 0.41) (0.14, 0.19)* (0.18, 0.27) (0.28, 0.41)

were compared in terms of the modeling capabilities with the
use of the lme4 package [27].

A reduced number of variables is used for the algorithm to
iterate with 606 points, at most 3 fixed effects and 2 random
effects. This procedure permits to assess both the relative im-
portance of the acoustic features (fixed factors) and speaker and
activity (random factors) on the perceived quality. We select the
most informative feature of each of the three domains as fixed
factors.

3. Results
Table 1 presents the 95% confidence interval of the mean value
of the selected features separated by groups. Only 8 out of the
92 analyzed input features satisfy the established criteria when
off-line evaluation data are contrasted (see table 1) (27 features
were selected in [7] and 21 in [8]). Only 5 of them do when real-
time evaluation is contrasted (asterisks in the last three columns
of table 1). In fact, in real-time evaluation, when the groups DS
Right vs. DS Wrong and DS Wrong vs. DS Poor are compared,
only one and two variables respectively satisfy the imposed con-
ditions (features f1, e1 and d3). This result suggests a richer
evaluation in off-line conditions with more features in all the do-
mains. In real-time evaluation the values of the energy domain
variables are inconsistent in what concerns to group separation:
no significant differences between groups and the closer to the
typical values does not imply the more quality. Results suggest
that recordings were evaluated by Poor when abnormal values
of the temporal domain or F0 domain were observed (features
f1, d1, d3-d5) and that utterances were marked as Wrong when
speed was low (d1 feature).

Concerning the selected features,
F0semitoneFrom27.5Hz sma3nz pctlrange0-2 represents
the range of 20-th to 80-th of logarithmic F0 on a
semitone frequency scale, starting at 27.5 Hz and jitter-
Local sma3nz stddevNorm represents the coefficient of
variation of the deviations in individual consecutive F0 period
lengths. In energy domain, loudness sma3 percentile20.0
means the percentile 20-th of estimate of perceived sig-
nal intensity from an auditory spectrum. Finally, related
with the temporal domain, loudnessPeaksPerSec means the
number of the loudness peaks per second and StddevVoiced-

SegmentLengthSec represents the standard deviation of
continuously voiced regions. soundingPercentage represents
the duration percentage of voiced regions, silencesPerSecond
means the number of silences per second and silencesMean
represents the length mean of unvoiced regions.

The values of the confidence intervals in table 1 show that
the wider the F0 range (higher f1 feature) and the less stable f0
contour (higher f2 feature) the more abnormal the utterance is
perceived; the weaker the intensity (lower e1 feature) the more
penalized the utterance is; utterances belonging to the wrong
and poor groups are slower (lower d1 feature), have more speed
changes (higher d2 feature), with more inner pauses (lower d3
and higher d4 feature) or longer pauses (higher d5 feature).

Table 1 also permits to contrast the values of features in
typical vs. DS speakers. Focusing on off-line evaluation, we
observe that the gap between Typical and Right productions is
relevant for features f2, e1, d1, d2, d4 (with not overlapping
intervals). The distance between Typical and Right utterances
is higher than the distance between Right and Wrong utterances
for features f2, e1 and d1. f1 and d5 features present the most
overlapped intervals between Right and Typical utterances.

Table 2 shows how accurate a set of logistic regression
models represent the working data. We select a feature per do-
main as the features in the same domain exhibit a high correla-
tion. The incremental inclusion of new variables in the ANOVA
test permits to show that all the variables significantly contribute
in the modeling. The use of the variable related to duration do-
main (Dur in m3 and m10 models) and the inclusion of the ac-
tivity in the model (m7 model), offer the most significant mod-
elling improvements (more AIC and deviance reduction and
more Acc increase).The use of random factors is a need for im-
proving the quality of the modelling (AIC goes from 716.19 to
612.60 and Acc from 70% to 80%). Slopes of the random fac-
tors do not contribute to improve the modeling (m11 and m12
rows).

The feature selection procedure allows to identify the 8
most informative variables to predict prosodic quality from the
92 analyzed variables with satisfactory results: an automatic
classifier SVM trained with the 92 variables performs with
72.0% accuracy and with the 8 variables selected performs with
71.0% (SMO -Sequential Minimal Optimization- implementa-
tion of Weka tools using normalized poly kernel with exponent
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Table 2: Summary of the sequential ANOVA test of the mixed logistic regression models when the quality of the utterance is predicted
using the binary off-line evaluation. F0 is the variable f1 in table 1, En is the variable e1, Dur is the variable d5, Speaker ranges
from 1 to 5, Activity ranges from 1 to 40. I means intercept and S refers to both slope and intercept.The quality metrics are the ones
reported by the command anova of the package lme4 and Acc is the accuracy of the prediction of the training samples. Sig. codes: 0
‘***’ 0.001 ‘**’ 0.01 ‘*’. AIC is the Akaike’s Information Criterion [28].

Fixed effect Random factor Quality of the model
Model F0 En Dur Speaker Activity AIC deviance Chisq Pr(>Chisq) sig Acc
m1 X 775.76 771.76 65%
m2 X 774.68 770.68 1.083 66%
m3 X 723.98 719.98 50.700 68%
m4 X X 720.82 714.82 5.159 0.02313 * 69%
m5 X X X 716.19 708.90 5.921 0.01496 * 70%
m6 X I 761.36 755.36 66%
m7 X I 684.19 678.19 77.1729 < 2.2e-16 *** 74%
m8 X I I 666.17 658.17 20.0255 7.642e-06 *** 75%
m9 X X I I 654.38 644.38 13.7854 0.0002049 *** 77%
m10 X X X I I 612.60 600.60 43.7799 3.675e-11 *** 80%
m11 X X X I S 614.31 600.31 0.2872 0.5920068 80%
m12 X X X S S 616.31 600.31 0.0000 1.0000000 80%

2 [29]). Including speaker and activity information, the SVM
classifier (same configuration) predicts prosodic quality with
76.8% accuracy with 8 variables and 76.7% with the 92 acoustic
features (exponent 1 poly kernel in the last case).

4. Discussion
The acoustic features belonging to the temporal domain seem
to be effective for the assessment of oral turns independently of
speaker and activity: 5 variables out of the 8 selected features
refer to temporal features (table 1) and the models including the
duration of the pauses are the best predicting the quality of the
utterances (table 2). This is an attractive result because the com-
putation of this type of features, in contrast with the ones be-
longing to the F0 or spectral domain, is more robust in the face
of the adverse conditions that could occur with users with DS.
In general, the pitch detection algorithms produce more errors
in pathological voices than in typical voices [30]. Furthermore,
features related to the temporal domain can be easily related
to disfluent speech (stuttering or cluttering) that, although not
universal, is a common problem of this population [31, 32, 33].

The mixed regression model indicates that not only consid-
ering the speaker is important (already shown in [8]) but also the
particular activity performed by the speaker during the record-
ing. The specification of the particular activity was not relevant
to identify whether the oral turn corresponded to a speaker with
Down syndrome or not in previous works [7]. Nevertheless,
here it appears to be relevant for assessing the quality of the
oral turns (significantly higher precision in models m7-m10).

The search of new features, or combinations of the ones
already computed, that could be related to the activity or type
of activity is proposed as future work in order to improve the
results, at the time that a bigger corpus is compiled for test-
ing more sophisticated models or alternative machine learn-
ing techniques. This is a challenging task because the video
game has diverse activities for players to train different lan-
guage functions like asking, expressing opinions, social inter-
action. . . prosodic functions like chunking or prominence in dif-
ferent production modes: reading, elicited or free speech. It is
present work the use of the utterances of the corpus for com-
piling an unsupervised classification of the activities that takes

into account the different acoustic prosodic features and human
judgments of quality.

5. Conclusions
The paper has presented a feature selection procedure that prof-
its evidences from different human based evaluations and that
benefits as well of empirical observations that concern with dif-
ferences between Down syndrome utterances with respect to
typical speakers ones.

The procedure has shown to be efficient so that 8 selected
features permit predicting prosodic quality as accurately as 93
features ensemble. It permits identifying the most discriminant
features per domain: temporal, frequency and energy related
domain.

It has been shown and discussed the reasons why improv-
ing the accuracy of the classifier requires the consideration of
the type of activity and specific profile of the user of the train-
ing tool. This fact highlights the need to implement specialized
classifiers on the different type of activities and the implemen-
tation as well of user adaption techniques in future work.
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