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ABSTRACT 
Most conventional chatbots rely on strategies that extract 
information from databases and use predefined templates to 
generate responses, which poses a significant limitation in 
maintaining natural, rich, and contextually adapted dialogues. This 
study examines the enhancement of chatbots through the 
integration of application programming interfaces (APIs) from 
large pretrained language models (LLMs), focusing particularly on 
the GPT architecture. First, the conventional architectural paradigm 
of chatbots is described, followed by a description of the integration 
of GPT-based components. As a proof of concept, this enhanced 
architecture is implemented in a controlled environment, evaluating 
coherence, contextual relevance, and adaptability. Results, based 
on user opinions, indicate a significant improvement in the quality 
of interactions with the enhanced chatbot compared to its 
conventional counterpart. In conclusion, the integration of LLM 
APIs, in this case GPT, represents a notable advancement in 
dialogue systems, offering more contextual and adaptive responses. 
This study anticipates a relevant leap in chatbot technology, 
suggesting a paradigm shift towards more humanized and effective 
human-computer interactions in the coming years. 

1 Introduction 
Chatbots are defined as software agents designed to simulate 
conversations with human users through textual or voice interfaces 
[10]. In the current state of information technologies, chatbots have 
found a niche market with various applications, ranging from 
customer service [16] to personal assistance [9] [4], political 
campaigns [12]. Despite their widespread use, conventional 
chatbots face significant limitations, particularly in their ability to 
maintain sufficiently rich and varied dialogues that adapt to the 
conversation context with a satisfactory level of naturalness [18]. 
Traditionally, these systems have relied on strategies to extract 
information from databases and use predefined templates, limiting 

their ability to adapt to the complexities of natural language and 
offer relevant and personalized responses. 

Considering this fundamental limitation, there is a need to explore 
more advanced approaches that can navigate the high variety of 
human language with greater flexibility. This study presents some 
key insights to improve the functionality of chatbots through the 
integration of Language Model APIs, with a specific focus on the 
GPT (Generative Pretrained Transformer) architecture. The choice 
of GPT as the central axis is based on its demonstrated ability to 
understand and generate text dynamically, offering a more natural 
and fluid approach in automated interactions. The challenge lies in 
presenting how to include the API within already developed 
systems or those following the conventional structure of pre-
established dialogues. 

This article describes the implementation of a conversational 
system on the Dialogflow platform [6] using the capabilities of 
generative artificial intelligence, specifically GPT, to improve 
intent detection offered by the platform, as well as to offer other 
language generation functionalities. We explain how the 
integration of advanced technologies like GPT can overcome 
traditional barriers associated with chatbots, thus facilitating 
progress towards more natural, intuitive, and effective interactions. 
The timing of this article is opportune because GPT technology is 
still in its infancy, but its widespread adoption looms as a potential 
mean to enhance the quality and relevance of responses, potentially 
marking a step towards systems that can interact in a more human 
and adaptive manner. 

The rest of the article is structured as follows: first, the research is 
contextualized in the state of the art on chatbots and the use of 
LLMs in service-oriented dialogue systems; then, the methodology 
adopted to integrate GPT into the chatbot architecture is presented, 
along with a description of the proof-of-concept implementation, 
and an evaluation of the results obtained. Through this analysis, we 
aim not only to highlight the effectiveness of integrating LLMs in 
improving chatbots but also to explore the implications of these 
advancements for the future of human-computer interaction. 
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2 State of the art 

2.1 Chatbots creation technology 
The creation of conversational agents that emulate human 
communication is at the root of computing motivations since 
Turing posed the question in the seminal article on artificial 
intelligence Computer Machinery and Intelligence [20], asking 
whether computers could communicate indistinguishably from 
humans. Since then, chatbots, as programs that communicate with 
humans or other chatbots giving the impression of not being 
automatons, have undergone significant evolution. The earliest 
systems, dating back to the 1960s with the pioneer ELIZA, relied 
on the pattern-response technique, where responses were generated 
through the identification of keywords and the application of pre-
established rules to simulate human conversations. Despite its 
simplicity, ELIZA demonstrated machines' ability to emulate 
human interactions in limited contexts, laying the groundwork for 
future research in the field [22]. 

Over time, chatbot construction technology has evolved from rule-
based systems to more complex models using natural language 
processing (NLP) and machine learning techniques. Despite these 
improvements and their application in dozens of commercial 
services [1] [25], conventional chatbots still have significant 
limitations, particularly in their ability to understand and process 
natural language effectively. Rule-based techniques and pattern 
recognition systems, although useful for applications with a limited 
and predictable scope, often fail in situations requiring deep 
contextual understanding or the management of unstructured 
dialogues. This inability to handle the ambiguity and variety of 
human language limits chatbots' effectiveness in providing 
coherent and contextual responses, resulting in frustrating user 
experiences in complex scenarios [24] [13] . 

2.2 Natural language generation with GPT  
The transition towards artificial intelligence-based systems and 
language models like GPT represents a significant advancement in 
overcoming chatbots' limitations. These models have demonstrated 
a remarkable ability to generate coherent responses that take into 
account the conversation context. To achieve this, GPT systems are 
based on pretrained models with a large amount of text, allowing 
them to capture a wide range of linguistic nuances [2][21]. This 
evolution has brought chatbots closer to truly natural interaction 
with users, marking a milestone in the development of more 
advanced and efficient automated dialogue systems. 

GPT technology has proven to be highly effective in understanding 
and generating natural language. This technology is based on 
Transformers [15], which combine the encoder-decoder 
architecture [14] with the attention mechanism [21]. One of the 
most successful GPT products applied to language is chatGPT, 
which has continuously evolved since its first version launched in 
2022, using a methodology of unsupervised pretraining followed 
by supervised fine-tuning. The use of models with millions of 
parameters, combined with specialized fine-tuning processes, has 
made the application an undeniable success [19]. 

The impact of GPT and transformer models in general on natural 
language generation is profound, offering more powerful and 

flexible tools for developers and data scientists [2]. These tools 
have enormous potential in improving chatbot programming and 
are poised to become a staple in dialogue system development kits. 
Despite this potential, the integration of GPT into conventional 
chatbot architectures is still under development. 

3 Description of the software architecture  
Figure 1 depicts the general architecture of a standard 
conversational system. The user generates a written or spoken 
expression (using the computer's microphone or phone), and the 
system interprets the input sequence by extracting the semantic 
content of the transaction, referred to as an intent or communicative 
intention. To extract semantic values, explicitly declared formal 
grammars can be employed, but nowadays, it is more common to 
train automatic systems using example phrases. When the system 
identifies the intention of the input expression, an event or series of 
events is triggered, each associated with a set of actions to be 
executed by the dialogue manager [17]. Taking the example phrase 
I want to read a science fiction book of less than 250 pages, the 
intent, or user's intention, would be to get a book recommendation, 
while the genre (science fiction) and length (less than 250 pages) 
would be semantic values. 

Figure 1: General solution architecture (inspired in [11]). 
 
The extracted semantic value or values from the input expression 
can be used to assign values to parameters in the interaction 
context. These values are used as input parameters for actions to 
access a database that provides relevant variables for the 
interaction. In response, actions return values that are used by 
natural language generation systems to craft responses. 

Until recently, the usual way to generate responses was to use 
templates where variable elements were replaced by the values 
returned by actions. Nowadays, automatic systems trained with 
labeled dialogue corpora are also commonly used. The logic of the 
interaction between the user and the system is generated from a 
detailed description of the intents and entities or slots of semantic 
frames [3]. In some cases, flowcharts are also used to plan and 
design the dialogue with the user. 

The first applications of GPT trained on LLMs within dialogue 
systems are in generating responses using natural language [5]. 
These systems allow more flexible responses using the terms 
resulting from the actions invoked in the dialogue manager. When 
the GPT system is powerful enough, its API can be used to collect 
information that replaces or complements the information 
traditionally collected from the database. When the system is 
configured in chat mode, simulating a conversation with the user, 
it could be used directly to replace the dialogue manager. In this 
work, we explore the first of these options on a use case that will 
serve to assess the potential of its use.  
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4 Proof of concept 
A system has been developed as a proof of concept that 
recommends book readings. The system provides users with 
reading recommendations using key terms such as the author, 
genre, number of pages in the book, year of publication, and the 
target audience: children, young adults, or adults. Additionally, 
given a title, the system can offer a synopsis of the book or 
additional information related to the key terms. 

4.1 Prototype description 
The prototype has been developed using Dialogflow, which is part 
of the Google Cloud platform and allows the design of 
conversational interfaces, facilitating their integration into various 
devices and applications. Specifically, the ES version is used, a 
simpler version suitable for designing conversational agents of 
medium complexity [6]. Figure 2 depicts the Dialogflow software 
architecture with its main components. 

 

Figure 2: Dialogflow architecture [7] 
 

To date, the Dialogflow ES version lacks functionalities to utilize 
LLMs, although these have already been integrated into its more 
advanced version, Dialogflow CX. Therefore, a development effort 
is required to access the capabilities offered by these generative 
models. In this proof of concept, we will adopt this approach to 
enhance the capabilities of intent detection and response generation 
provided by the platform. The general architecture of our system 
consists of two main elements: the Dialogflow platform and an API 
that allows responding to system requests, also known as a 
webhook service. This service can, in turn, call other APIs or 
include integration with databases, and in our case, it will handle 
the connection with the OpenAI API. This webhook API should 
expose a POST operation, which will be used in all calls made by 
Dialogflow to the service. This system leverages the capabilities of 
GPT to classify the user's intent and extract the terms present in 
their request, such as the book title, author, or desired genre for 
recommendations. Recommendation generation and synopsis are 
carried out through calls to GPT, and the information is stored in a 
MongoDB database to avoid unnecessary queries to the model. 
Additionally, the relationship between the Dialogflow session and 
the last referred book is kept in memory, allowing the user to 
request synopses or information about the book without needing to 
re-enter the title. This helps optimize resources and improve the 
user experience. The final response is generated from a series of 
predefined templates, which are complemented with information 
returned by GPT. 

To obtain the intent through the LLM, it is necessary to create the 
desired intents in the Dialogflow platform. Dialogflow functions as 
an authoring tool that allows setting up the dialogue interactively 
by establishing intents and associated events. For each intent, it is 
necessary to define an event. This event will allow the webhook 
service to access the intent through it, via a fulfillment request 
response, for which it will be necessary to activate this option in 
the fallback intent offered by the system. In the example case, three 
intents have been defined, one for each of the functionalities 
offered by the system (GetInfo, GetSynopsis, and 
RecommendBook), as well as two additional intents to facilitate the 
management of the key terms that the user may use for obtaining 
recommendations. Additionally, six entities have been defined to 
model the parameters of the user's query. 

After configuring all this, the code responsible for handling the 
intent is created. This code should accept the system request and 
extract both the current intent and the user request. Then, a message 
is sent to GPT requesting it to classify the user's intention into a 
series of categories, including an extra category for classifying 
requests that do not match the previously defined ones. 
Furthermore, GPT can be requested to extract relevant parameters 
from the user's request, preferably in a predefined JSON format to 
facilitate handling of the response (see figure 3). When the system 
is ready to recognize the intent, the process is triggered when a user 
makes a request. As there is no intent configured with training 
phrases, Dialogflow activates the fallback, which calls the webhook 
API via fulfillment. In the code, the current intent (in this case, 
fallback) and the user request are obtained, and a call to GPT 
(version 3.5 Turbo) is made to classify the user's intent. Once 
classified, an event response is sent to Dialogflow, where the event 
matches the user's intention, and all relevant parameters, if any, are 
included. 

 The response generation is carried out similarly to obtaining the 
intent, using fulfillment so that Dialogflow calls the webhook 
service, from which queries to GPT are made. These calls include 
some fields of interest, such as those specified below [8]: 

Your task is to classify the user's intent based on their message. 
There are 3 possible intents: to obtain information, to get a synopsis, or to 
get a recommendation about a book. You should return a response in JSON format, 
with the following structure: 
{  
  "intent": INTENT  
  "book: BOOK  
  "filters: FILTERS  
}  
where INTENT will take one of these values: 
 - information if the user wants to obtain information 
 - synopsis if the user wants a synopsis or summary 
 - recommendation if the user wants a recommendation 
 - fallback if the intent is unclear or does not correspond to any of the above 
BOOK will be the title of the book if included in the message. Otherwise, its 
value will be an empty string. 
FILTERS will only be considered if it is a recommendation and will follow this 
structure:  
{ 
"genre": literary genre the user is interested in, empty if not specified    
"author": author the user is interested in 

  "theme": theme the user is interested in 
  "minPages": minimum number of pages 
  "maxPages": maximum number of paged 
  "lang": desired language, in ISO 639 format 
  "langLevel": desired language level 
  "similarBook": similar book the user is interested in 
  "age": target audience age of the book 
} 

Figure 3: Intent classification prompt using GPT. 
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• session: session identifier in Dialogflow. 
• queryResult: this field includes the original user request 

(queryText) as well as the information about the different 
Dialogflow parameters (parameters). 

• intent: intent information, as its name, accessible at 
displayName. 

When generating responses with GPT, it's possible to obtain 
complete responses directly to offer them to the end user, or 
parameterized responses, where the assistant is asked to respond 
using a specific structure, such as JSON. Then, this data is 
processed to craft the final response, allowing for greater control 
and avoiding unexpected responses that may affect the user 
experience. 

Figure 4 shows the sequence of events that are part of the flow, 
from the moment when the user makes a request until the system 
generates a response. The flow begins with the user's request, for 
example, I want to read a science fiction book of less than 250 
pages (1 in the figure). Dialogflow does not detect any intent (as no 
training phrases have been configured for any). The fallback intent 
is triggered (2). A fulfillment request is made for the fallback intent 
(3). The fulfillment API makes a request to GPT, asking it to 
classify the user's intent and extract the parameters from it (4). GPT 
responds with the detected intent and the parameters of the request 
(5). The API responds with an event response containing the intent 
and parameters obtained by GPT (6). Dialogflow makes a new 
fulfillment request, this time for the recognized intent, in the 
example case, "recommendation" (7). The API requests a response 
from GPT (8). GPT responds to the request (9). The API composes 
the final response from the JSON obtained through GPT and sends 
the result to Dialogflow (10). Dialogflow displays the response to 

the user (11). Figure 5 shows examples of the information 
transmitted in these steps. 

4.2 System evaluation 

Once the system is implemented, a usability study is conducted, in 
which five participants perform transactions in a controlled 
laboratory environment, in person. A series of tasks related to 
searching for reading recommendations are proposed, and 
observations related to user behavior are noted. At the end of the 
session, users are asked to fill out an evaluation survey regarding 
the tested system. The survey consists of six questions focusing on 
personal perception of ease of use, system speed, interaction 
comfort, and satisfaction with the obtained responses. In the 
questionnaire, users unanimously rate the system as easy to use, 
with quick interaction, although they also state that they did not feel 
like they were talking to a person. Four of the users were satisfied 
with the recommendations obtained, although only one found the 
information reported in the additional information sheets useful. 

From the observations made during the usability tests, it can be 
highlighted that the system is capable of detecting the user's intent 
from relatively ambiguous phrases ("what is the book about"), but 
there are cases where the system cannot recognize the intention or 
recognizes it incorrectly. There is a high repetition in the 
recommendations. The system is able to complete the information 
structure in most cases, but it can also generate unexpected results. 

 
Figure 4: Sequence of obtaining a response. Figure 5 details 
the contents transmitted at each step. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Information transmitted in the different steps 
represented in Figure 4. In black are the data sent, in blue is a 
description, the number refers to the identifier of the step in 
Figure 4. 

 

{ 
"followupEventInput": { 
  "name": "recommendation" 

    "languageCode": "en-US" 
    "parameters": { 
      "genre": "science fiction", 
      "maxPages": "250", 
      "lang": "en"     
  } 
} 
Fallback intent fulfillment response (6) 

I want you to make a recommendation about a book that 
meets the introduced filters. If the filters are 
empty, recommend a random book. The response should be 
in JSON format following the following structure: 
{ 
"book": Recommended book name 
"author": Book author 

} 
Prompt for obtaining a recommendation (8) 

{ 
"book": "The Time Machine" 
"author": "H.G. Wells" 

} 
Recommendation response obtained with GPT (8) 

"fulfillmentMessages": [ 
"text": { 
  "text": "In that case, I recommend you the book The Time 
Machine by H.G. Wells. Would you like another 
recommendation? I can also provide you with the synopsis or 
information about the book." 
} 

] 
Fulfilment response for recommendation intent (10) 
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5 Discussion and conclusions 
The usual use of dialogue systems with commercial platforms like 
Dialogflow involves defining a set of expected training phrases to 
classify the user's intent within a set of predefined intents. This 
process requires domain knowledge that leads to the declaration of 
an appropriate set of phrases. User-defined entities must also be 
considered beforehand and limited to a finite list or regular 
expression, which can make their detection challenging in certain 
cases. The closed set of template phrases and limited entities 
restricts user expressiveness and leads to issues in service usage. In 
contrast, as demonstrated by the described system, the use of GPT 
provides flexibility in classifying user intent without the need for 
training phrases, simply by listing available options and describing 
desired entities in natural language. 

The use of GPT not only facilitates the detection of intents and 
entities but can also be used to entirely or partially eliminate them. 
In this case, the responsibility for classifying intent and necessary 
parameters would fall on the model, which with the appropriate 
instructions can become a personalized assistant. Following the 
example of book recommendation, the implementation could be 
done by sending the user input directly to GPT and requesting it to 
simulate being a book recommendation system and respond to the 
user's request. Future work includes contrasting this option, but the 
tests conducted in the proof of concept indicate that this option may 
entail risks due to the lack of control over possible responses. 

It is important to highlight that our approach goes beyond simply 
creating an interface for interacting with the large language model 
(LLM) of GPT. Unlike a generic implementation that could be 
limited to sending prompts to an LLM and returning its responses, 
as it would be facilitated by DialogFlow CX in its generative mode, 
our system is designed to extract and handle meaningful variables 
within the context of a dialogue. This capability enables a more 
functional integration with the dialogue process, enabling the 
precise identification of intents and entities, as well as the 
adaptation of LLM responses to the specific needs of the context. 
For example, the direct use of ChatGPT for acquiring products like 
for example sneakers (with high variety and multiple 
characteristics) might result in an inefficient and possibly sterile 
exchange, given the open nature of its responses. In contrast, our 
approach allows for defining the dialogue flow in a way that 
effectively uses the LLM to identify key intents and entities, 
ensuring a goal-oriented and relevant interaction. Therefore, our 
work should not be merely seen as the creation of a front-end but 
as the development of an integrated solution that harnesses the 
power of GPT to significantly enhance automated interaction, 
providing a smarter and more contextual framework for automated 
dialogue. Our proposal relies on intent classification and response 
retrieval, which can be independently implemented complementing 
the functionalities offered by the dialogue platform. Thus, GPT is 
employed to detect the intent and subsequently obtain responses 
through the usual flows offered by the platform. 

While our study provides valuable insights into the potential 
enhancements offered by integrating ChatGPT into conventional 

chatbot architectures, we acknowledge the need for a more rigorous 
evaluation methodology, as highlighted by [23] and similar works. 
Metrics for evaluating chatbots, particularly those aimed at 
optimizing user experience, require careful consideration and 
adoption. Additionally, our evaluation solely with users was limited 
by a smaller sample size and lack of detailed user descriptions. As 
such, future work should aim to incorporate more sophisticated 
metrics and methodologies, including larger participant pools and 
clearer user descriptions, to provide a more comprehensive 
assessment of the proposed enhancements. Furthermore, 
conducting comparative tests directly with GPT to evaluate the 
effectiveness of the proposed approach would be beneficial and is 
an avenue for future research. 

In conclusion, using an LLM-based system within a dialogue 
system not only anticipates improving the quality and relevance of 
responses generated by chatbots but also signals a paradigm shift 
in automated dialogue technology, marking the transition towards 
systems that can interact more humanly and adaptively. 
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