
Integration of generative LLMs into the new generation of chatbots
to enhance human-computer interaction

Guillermo Vicente-Oliva†
Departamento de Informática

Universidad de Valladolid
Valladolid, Spain

guillermo.vicente.oliva@uva.es

David Escudero-Mancebo
 Departamento de Informática

Universidad de Valladolid
 Valladolid, Spain

descuder@infor.uva.es

César González-Ferreras
 Departamento de Informática

 Universidad de Valladolid
 Valladolid, Spain

 cesargf@uva.es

Valentín Cardeñoso-Payo
Departamento de Informática

Universidad de Valladolid
Valladolid, Spain

valentin.cardenoso@uva.es

ABSTRACT
Most conventional chatbots rely on strategies that extract
information from databases and use predefined templates to
generate responses, which poses a significant limitation in
maintaining natural, rich, and contextually adapted dialogues. This
study examines the enhancement of chatbots through the
integration of application programming interfaces (APIs) from
large pretrained language models (LLMs), focusing particularly on
the GPT architecture. First, the conventional architectural paradigm
of chatbots is described, followed by a description of the integration
of GPT-based components. As a proof of concept, this enhanced
architecture is implemented in a controlled environment, evaluating
coherence, contextual relevance, and adaptability. Results, based
on user opinions, indicate a significant improvement in the quality
of interactions with the enhanced chatbot compared to its
conventional counterpart. In conclusion, the integration of LLM
APIs, in this case GPT, represents a notable advancement in
dialogue systems, offering more contextual and adaptive responses.
This study anticipates a relevant leap in chatbot technology,
suggesting a paradigm shift towards more humanized and effective
human-computer interactions in the coming years.

1 Introduction
Chatbots are defined as software agents designed to simulate
conversations with human users through textual or voice interfaces
[10]. In the current state of information technologies, chatbots have
found a niche market with various applications, ranging from
customer service [16] to personal assistance [9] [4], political
campaigns [12]. Despite their widespread use, conventional
chatbots face significant limitations, particularly in their ability to
maintain sufficiently rich and varied dialogues that adapt to the
conversation context with a satisfactory level of naturalness [18].
Traditionally, these systems have relied on strategies to extract
information from databases and use predefined templates, limiting

their ability to adapt to the complexities of natural language and
offer relevant and personalized responses.

Considering this fundamental limitation, there is a need to explore
more advanced approaches that can navigate the high variety of
human language with greater flexibility. This study presents some
key insights to improve the functionality of chatbots through the
integration of Language Model APIs, with a specific focus on the
GPT (Generative Pretrained Transformer) architecture. The choice
of GPT as the central axis is based on its demonstrated ability to
understand and generate text dynamically, offering a more natural
and fluid approach in automated interactions. The challenge lies in
presenting how to include the API within already developed
systems or those following the conventional structure of pre-
established dialogues.

This article describes the implementation of a conversational
system on the Dialogflow platform [6] using the capabilities of
generative artificial intelligence, specifically GPT, to improve
intent detection offered by the platform, as well as to offer other
language generation functionalities. We explain how the
integration of advanced technologies like GPT can overcome
traditional barriers associated with chatbots, thus facilitating
progress towards more natural, intuitive, and effective interactions.
The timing of this article is opportune because GPT technology is
still in its infancy, but its widespread adoption looms as a potential
mean to enhance the quality and relevance of responses, potentially
marking a step towards systems that can interact in a more human
and adaptive manner.

The rest of the article is structured as follows: first, the research is
contextualized in the state of the art on chatbots and the use of
LLMs in service-oriented dialogue systems; then, the methodology
adopted to integrate GPT into the chatbot architecture is presented,
along with a description of the proof-of-concept implementation,
and an evaluation of the results obtained. Through this analysis, we
aim not only to highlight the effectiveness of integrating LLMs in
improving chatbots but also to explore the implications of these
advancements for the future of human-computer interaction.

58

Interacción'24, Junio 19-21, 2024. A Coruña, España Vicente-Oliva et al.

2 State of the art

2.1 Chatbots creation technology
The creation of conversational agents that emulate human
communication is at the root of computing motivations since
Turing posed the question in the seminal article on artificial
intelligence Computer Machinery and Intelligence [20], asking
whether computers could communicate indistinguishably from
humans. Since then, chatbots, as programs that communicate with
humans or other chatbots giving the impression of not being
automatons, have undergone significant evolution. The earliest
systems, dating back to the 1960s with the pioneer ELIZA, relied
on the pattern-response technique, where responses were generated
through the identification of keywords and the application of pre-
established rules to simulate human conversations. Despite its
simplicity, ELIZA demonstrated machines' ability to emulate
human interactions in limited contexts, laying the groundwork for
future research in the field [22].

Over time, chatbot construction technology has evolved from rule-
based systems to more complex models using natural language
processing (NLP) and machine learning techniques. Despite these
improvements and their application in dozens of commercial
services [1] [25], conventional chatbots still have significant
limitations, particularly in their ability to understand and process
natural language effectively. Rule-based techniques and pattern
recognition systems, although useful for applications with a limited
and predictable scope, often fail in situations requiring deep
contextual understanding or the management of unstructured
dialogues. This inability to handle the ambiguity and variety of
human language limits chatbots' effectiveness in providing
coherent and contextual responses, resulting in frustrating user
experiences in complex scenarios [24] [13] .

2.2 Natural language generation with GPT
The transition towards artificial intelligence-based systems and
language models like GPT represents a significant advancement in
overcoming chatbots' limitations. These models have demonstrated
a remarkable ability to generate coherent responses that take into
account the conversation context. To achieve this, GPT systems are
based on pretrained models with a large amount of text, allowing
them to capture a wide range of linguistic nuances [2][21]. This
evolution has brought chatbots closer to truly natural interaction
with users, marking a milestone in the development of more
advanced and efficient automated dialogue systems.

GPT technology has proven to be highly effective in understanding
and generating natural language. This technology is based on
Transformers [15], which combine the encoder-decoder
architecture [14] with the attention mechanism [21]. One of the
most successful GPT products applied to language is chatGPT,
which has continuously evolved since its first version launched in
2022, using a methodology of unsupervised pretraining followed
by supervised fine-tuning. The use of models with millions of
parameters, combined with specialized fine-tuning processes, has
made the application an undeniable success [19].

The impact of GPT and transformer models in general on natural
language generation is profound, offering more powerful and

flexible tools for developers and data scientists [2]. These tools
have enormous potential in improving chatbot programming and
are poised to become a staple in dialogue system development kits.
Despite this potential, the integration of GPT into conventional
chatbot architectures is still under development.

3 Description of the software architecture
Figure 1 depicts the general architecture of a standard
conversational system. The user generates a written or spoken
expression (using the computer's microphone or phone), and the
system interprets the input sequence by extracting the semantic
content of the transaction, referred to as an intent or communicative
intention. To extract semantic values, explicitly declared formal
grammars can be employed, but nowadays, it is more common to
train automatic systems using example phrases. When the system
identifies the intention of the input expression, an event or series of
events is triggered, each associated with a set of actions to be
executed by the dialogue manager [17]. Taking the example phrase
I want to read a science fiction book of less than 250 pages, the
intent, or user's intention, would be to get a book recommendation,
while the genre (science fiction) and length (less than 250 pages)
would be semantic values.

Figure 1: General solution architecture (inspired in [11]).

The extracted semantic value or values from the input expression
can be used to assign values to parameters in the interaction
context. These values are used as input parameters for actions to
access a database that provides relevant variables for the
interaction. In response, actions return values that are used by
natural language generation systems to craft responses.

Until recently, the usual way to generate responses was to use
templates where variable elements were replaced by the values
returned by actions. Nowadays, automatic systems trained with
labeled dialogue corpora are also commonly used. The logic of the
interaction between the user and the system is generated from a
detailed description of the intents and entities or slots of semantic
frames [3]. In some cases, flowcharts are also used to plan and
design the dialogue with the user.

The first applications of GPT trained on LLMs within dialogue
systems are in generating responses using natural language [5].
These systems allow more flexible responses using the terms
resulting from the actions invoked in the dialogue manager. When
the GPT system is powerful enough, its API can be used to collect
information that replaces or complements the information
traditionally collected from the database. When the system is
configured in chat mode, simulating a conversation with the user,
it could be used directly to replace the dialogue manager. In this
work, we explore the first of these options on a use case that will
serve to assess the potential of its use.

59

Integration of generative LLMs into the new generation of … Interacción'24, Junio 19-21, 2024. A Coruña, España

4 Proof of concept
A system has been developed as a proof of concept that
recommends book readings. The system provides users with
reading recommendations using key terms such as the author,
genre, number of pages in the book, year of publication, and the
target audience: children, young adults, or adults. Additionally,
given a title, the system can offer a synopsis of the book or
additional information related to the key terms.

4.1 Prototype description
The prototype has been developed using Dialogflow, which is part
of the Google Cloud platform and allows the design of
conversational interfaces, facilitating their integration into various
devices and applications. Specifically, the ES version is used, a
simpler version suitable for designing conversational agents of
medium complexity [6]. Figure 2 depicts the Dialogflow software
architecture with its main components.

Figure 2: Dialogflow architecture [7]

To date, the Dialogflow ES version lacks functionalities to utilize
LLMs, although these have already been integrated into its more
advanced version, Dialogflow CX. Therefore, a development effort
is required to access the capabilities offered by these generative
models. In this proof of concept, we will adopt this approach to
enhance the capabilities of intent detection and response generation
provided by the platform. The general architecture of our system
consists of two main elements: the Dialogflow platform and an API
that allows responding to system requests, also known as a
webhook service. This service can, in turn, call other APIs or
include integration with databases, and in our case, it will handle
the connection with the OpenAI API. This webhook API should
expose a POST operation, which will be used in all calls made by
Dialogflow to the service. This system leverages the capabilities of
GPT to classify the user's intent and extract the terms present in
their request, such as the book title, author, or desired genre for
recommendations. Recommendation generation and synopsis are
carried out through calls to GPT, and the information is stored in a
MongoDB database to avoid unnecessary queries to the model.
Additionally, the relationship between the Dialogflow session and
the last referred book is kept in memory, allowing the user to
request synopses or information about the book without needing to
re-enter the title. This helps optimize resources and improve the
user experience. The final response is generated from a series of
predefined templates, which are complemented with information
returned by GPT.

To obtain the intent through the LLM, it is necessary to create the
desired intents in the Dialogflow platform. Dialogflow functions as
an authoring tool that allows setting up the dialogue interactively
by establishing intents and associated events. For each intent, it is
necessary to define an event. This event will allow the webhook
service to access the intent through it, via a fulfillment request
response, for which it will be necessary to activate this option in
the fallback intent offered by the system. In the example case, three
intents have been defined, one for each of the functionalities
offered by the system (GetInfo, GetSynopsis, and
RecommendBook), as well as two additional intents to facilitate the
management of the key terms that the user may use for obtaining
recommendations. Additionally, six entities have been defined to
model the parameters of the user's query.

After configuring all this, the code responsible for handling the
intent is created. This code should accept the system request and
extract both the current intent and the user request. Then, a message
is sent to GPT requesting it to classify the user's intention into a
series of categories, including an extra category for classifying
requests that do not match the previously defined ones.
Furthermore, GPT can be requested to extract relevant parameters
from the user's request, preferably in a predefined JSON format to
facilitate handling of the response (see figure 3). When the system
is ready to recognize the intent, the process is triggered when a user
makes a request. As there is no intent configured with training
phrases, Dialogflow activates the fallback, which calls the webhook
API via fulfillment. In the code, the current intent (in this case,
fallback) and the user request are obtained, and a call to GPT
(version 3.5 Turbo) is made to classify the user's intent. Once
classified, an event response is sent to Dialogflow, where the event
matches the user's intention, and all relevant parameters, if any, are
included.

 The response generation is carried out similarly to obtaining the
intent, using fulfillment so that Dialogflow calls the webhook
service, from which queries to GPT are made. These calls include
some fields of interest, such as those specified below [8]:

Your task is to classify the user's intent based on their message.
There are 3 possible intents: to obtain information, to get a synopsis, or to
get a recommendation about a book. You should return a response in JSON format,
with the following structure:
{
 "intent": INTENT
 "book: BOOK
 "filters: FILTERS
}
where INTENT will take one of these values:
 - information if the user wants to obtain information
 - synopsis if the user wants a synopsis or summary
 - recommendation if the user wants a recommendation
 - fallback if the intent is unclear or does not correspond to any of the above
BOOK will be the title of the book if included in the message. Otherwise, its
value will be an empty string.
FILTERS will only be considered if it is a recommendation and will follow this
structure:
{
"genre": literary genre the user is interested in, empty if not specified
"author": author the user is interested in

 "theme": theme the user is interested in
 "minPages": minimum number of pages
 "maxPages": maximum number of paged
 "lang": desired language, in ISO 639 format
 "langLevel": desired language level
 "similarBook": similar book the user is interested in
 "age": target audience age of the book
}

Figure 3: Intent classification prompt using GPT.

60

Interacción'24, Junio 19-21, 2024. A Coruña, España Vicente-Oliva et al.

• session: session identifier in Dialogflow.
• queryResult: this field includes the original user request

(queryText) as well as the information about the different
Dialogflow parameters (parameters).

• intent: intent information, as its name, accessible at
displayName.

When generating responses with GPT, it's possible to obtain
complete responses directly to offer them to the end user, or
parameterized responses, where the assistant is asked to respond
using a specific structure, such as JSON. Then, this data is
processed to craft the final response, allowing for greater control
and avoiding unexpected responses that may affect the user
experience.

Figure 4 shows the sequence of events that are part of the flow,
from the moment when the user makes a request until the system
generates a response. The flow begins with the user's request, for
example, I want to read a science fiction book of less than 250
pages (1 in the figure). Dialogflow does not detect any intent (as no
training phrases have been configured for any). The fallback intent
is triggered (2). A fulfillment request is made for the fallback intent
(3). The fulfillment API makes a request to GPT, asking it to
classify the user's intent and extract the parameters from it (4). GPT
responds with the detected intent and the parameters of the request
(5). The API responds with an event response containing the intent
and parameters obtained by GPT (6). Dialogflow makes a new
fulfillment request, this time for the recognized intent, in the
example case, "recommendation" (7). The API requests a response
from GPT (8). GPT responds to the request (9). The API composes
the final response from the JSON obtained through GPT and sends
the result to Dialogflow (10). Dialogflow displays the response to

the user (11). Figure 5 shows examples of the information
transmitted in these steps.

4.2 System evaluation

Once the system is implemented, a usability study is conducted, in
which five participants perform transactions in a controlled
laboratory environment, in person. A series of tasks related to
searching for reading recommendations are proposed, and
observations related to user behavior are noted. At the end of the
session, users are asked to fill out an evaluation survey regarding
the tested system. The survey consists of six questions focusing on
personal perception of ease of use, system speed, interaction
comfort, and satisfaction with the obtained responses. In the
questionnaire, users unanimously rate the system as easy to use,
with quick interaction, although they also state that they did not feel
like they were talking to a person. Four of the users were satisfied
with the recommendations obtained, although only one found the
information reported in the additional information sheets useful.

From the observations made during the usability tests, it can be
highlighted that the system is capable of detecting the user's intent
from relatively ambiguous phrases ("what is the book about"), but
there are cases where the system cannot recognize the intention or
recognizes it incorrectly. There is a high repetition in the
recommendations. The system is able to complete the information
structure in most cases, but it can also generate unexpected results.

Figure 4: Sequence of obtaining a response. Figure 5 details
the contents transmitted at each step.

Figure 5: Information transmitted in the different steps
represented in Figure 4. In black are the data sent, in blue is a
description, the number refers to the identifier of the step in
Figure 4.

{
"followupEventInput": {
 "name": "recommendation"

 "languageCode": "en-US"
 "parameters": {
 "genre": "science fiction",
 "maxPages": "250",
 "lang": "en"
 }
}
Fallback intent fulfillment response (6)

I want you to make a recommendation about a book that
meets the introduced filters. If the filters are
empty, recommend a random book. The response should be
in JSON format following the following structure:
{
"book": Recommended book name
"author": Book author

}
Prompt for obtaining a recommendation (8)

{
"book": "The Time Machine"
"author": "H.G. Wells"

}
Recommendation response obtained with GPT (8)

"fulfillmentMessages": [
"text": {
 "text": "In that case, I recommend you the book The Time
Machine by H.G. Wells. Would you like another
recommendation? I can also provide you with the synopsis or
information about the book."
}

]
Fulfilment response for recommendation intent (10)

61

Integration of generative LLMs into the new generation of … Interacción'24, Junio 19-21, 2024. A Coruña, España

5 Discussion and conclusions
The usual use of dialogue systems with commercial platforms like
Dialogflow involves defining a set of expected training phrases to
classify the user's intent within a set of predefined intents. This
process requires domain knowledge that leads to the declaration of
an appropriate set of phrases. User-defined entities must also be
considered beforehand and limited to a finite list or regular
expression, which can make their detection challenging in certain
cases. The closed set of template phrases and limited entities
restricts user expressiveness and leads to issues in service usage. In
contrast, as demonstrated by the described system, the use of GPT
provides flexibility in classifying user intent without the need for
training phrases, simply by listing available options and describing
desired entities in natural language.

The use of GPT not only facilitates the detection of intents and
entities but can also be used to entirely or partially eliminate them.
In this case, the responsibility for classifying intent and necessary
parameters would fall on the model, which with the appropriate
instructions can become a personalized assistant. Following the
example of book recommendation, the implementation could be
done by sending the user input directly to GPT and requesting it to
simulate being a book recommendation system and respond to the
user's request. Future work includes contrasting this option, but the
tests conducted in the proof of concept indicate that this option may
entail risks due to the lack of control over possible responses.

It is important to highlight that our approach goes beyond simply
creating an interface for interacting with the large language model
(LLM) of GPT. Unlike a generic implementation that could be
limited to sending prompts to an LLM and returning its responses,
as it would be facilitated by DialogFlow CX in its generative mode,
our system is designed to extract and handle meaningful variables
within the context of a dialogue. This capability enables a more
functional integration with the dialogue process, enabling the
precise identification of intents and entities, as well as the
adaptation of LLM responses to the specific needs of the context.
For example, the direct use of ChatGPT for acquiring products like
for example sneakers (with high variety and multiple
characteristics) might result in an inefficient and possibly sterile
exchange, given the open nature of its responses. In contrast, our
approach allows for defining the dialogue flow in a way that
effectively uses the LLM to identify key intents and entities,
ensuring a goal-oriented and relevant interaction. Therefore, our
work should not be merely seen as the creation of a front-end but
as the development of an integrated solution that harnesses the
power of GPT to significantly enhance automated interaction,
providing a smarter and more contextual framework for automated
dialogue. Our proposal relies on intent classification and response
retrieval, which can be independently implemented complementing
the functionalities offered by the dialogue platform. Thus, GPT is
employed to detect the intent and subsequently obtain responses
through the usual flows offered by the platform.

While our study provides valuable insights into the potential
enhancements offered by integrating ChatGPT into conventional

chatbot architectures, we acknowledge the need for a more rigorous
evaluation methodology, as highlighted by [23] and similar works.
Metrics for evaluating chatbots, particularly those aimed at
optimizing user experience, require careful consideration and
adoption. Additionally, our evaluation solely with users was limited
by a smaller sample size and lack of detailed user descriptions. As
such, future work should aim to incorporate more sophisticated
metrics and methodologies, including larger participant pools and
clearer user descriptions, to provide a more comprehensive
assessment of the proposed enhancements. Furthermore,
conducting comparative tests directly with GPT to evaluate the
effectiveness of the proposed approach would be beneficial and is
an avenue for future research.

In conclusion, using an LLM-based system within a dialogue
system not only anticipates improving the quality and relevance of
responses generated by chatbots but also signals a paradigm shift
in automated dialogue technology, marking the transition towards
systems that can interact more humanly and adaptively.

ACKNOWLEDGMENTS

This work has been carried out within the framework of project
PID2021-126315OB-I00 funded by MCIN / AEI /
10.13039/501100011033 / FEDER, EU.

REFERENCES

[1] Eleni Adamopoulou and Lefteris Moussiades. 2020.
Chatbots: History, technology, and applications. Machine
Learning with Applications 2, (2020), 100006.

[2] Maria Teresa Baldassarre, Danilo Caivano, Berenice
Fernandez Nieto, Domenico Gigante, and Azzurra
Ragone. 2023. The social impact of generative ai: An
analysis on chatgpt. In Proceedings of the 2023 ACM
Conference on Information Technology for Social Good,
2023. 363–373.

[3] Oscar Corcho and Asunción Gómez-Pérez. 2000. A
roadmap to ontology specification languages. In
International Conference on Knowledge Engineering and
Knowledge Management, 2000. 80–96.

[4] Irina Dokukina and Julia Gumanova. 2020. The rise of
chatbots – new personal assistants in foreign language
learning. Procedia Comput Sci 169, (2020), 542–546.
https://doi.org/https://doi.org/10.1016/j.procs.2020.02.21
2

[5] Albert Gatt and Emiel Krahmer. 2018. Survey of the state
of the art in natural language generation: Core tasks,
applications and evaluation. Journal of Artificial
Intelligence Research 61, (2018), 65–170.

[6] Google. 2024. Dialogflow docs.
https://cloud.google.com/dialogflow/es/docs.

[7] Google. 2024. Fulfillment flow.
https://cloud.google.com/dialogflow/es/docs/images/fulfil
lment-flow.svg.

62

Interacción'24, Junio 19-21, 2024. A Coruña, España Vicente-Oliva et al.

[8] Google. 2024. Fulfillment webhook.
https://cloud.google.com/dialogflow/es/docs/fulfillment-
webhook?hl=es-419#webhook_request.

[9] Zhuoyan Han. 2023. The applications of chatbot.
Highlights in Science, Engineering and Technology 57,
(July 2023), 258–266.
https://doi.org/10.54097/hset.v57i.10011

[10] Daniel Jurafsky and James Martin. 2008. Speech and
Language Processing: An Introduction to Natural
Language Processing, Computational Linguistics, and
Speech Recognition.

[11] Candace Kamm, Shrikanth Narayanan, Dawn Dutton, and
Russell Ritenour. 1997. Evaluating spoken dialog systems
for telecommunication services. In Fifth European
Conference on Speech Communication and Technology,
1997. .

[12] Yunju Kim and Heejun Lee. 2023. The Rise of Chatbots
in Political Campaigns: The Effects of Conversational
Agents on Voting Intention. Int J Hum Comput Interact
39, 20 (2023), 3984–3995.
https://doi.org/10.1080/10447318.2022.2108669

[13] Lorenz Cuno Klopfenstein, Saverio Delpriori, Silvia
Malatini, and Alessandro Bogliolo. 2017. The rise of bots:
A survey of conversational interfaces, patterns, and
paradigms. In Proceedings of the 2017 conference on
designing interactive systems, 2017. 555–565.

[14] Sascha Lange and Martin Riedmiller. 2010. Deep auto-
encoder neural networks in reinforcement learning. In The
2010 international joint conference on neural networks
(IJCNN), 2010. 1–8.

[15] Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng
Qiu. 2022. A survey of transformers. AI Open (2022).

[16] Dragoș Florentin Mariciuc and others. 2023. A
Bibliometric Analysis of Publications on Customer
Service Chatbots. Management Dynamics in the
Knowledge Economy 11, 1 (2023), 48–62.

[17] M McTear, Z Callejas, and D Griol. 2016. The
conversational interface: Talking to smart devices:
Springer international publishing. Doi: https://doi.
org/10.1007/978-3-319-32967-3 (2016).

[18] Helly Raval. 2020. Limitations of existing chatbot with
analytical survey to enhance the functionality using
emerging technology. International Journal of Research
and Analytical Reviews (IJRAR) 7, 2 (2020).

[19] Denis Rothman. 2021. Transformers for Natural
Language Processing: Build innovative deep neural
network architectures for NLP with Python, PyTorch,
TensorFlow, BERT, RoBERTa, and more. Packt
Publishing Ltd.

[20] Alan M Turing. 2009. Computing machinery and
intelligence. Springer.

[21] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. 2017. Attention is all you need. Adv
Neural Inf Process Syst 30, (2017).

[22] Joseph Weizenbaum. 1966. ELIZA—a computer program
for the study of natural language communication between
man and machine. Commun ACM 9, 1 (1966), 36–45.

[23] Oscar Jimenez Flores y Juan Jimenez Flores y Yoselin
Gutiérrez Rojas y Víctor Jimenez Flores. 2018.
MÉTRICAS DE EVALUACIÓN PARA CHATBOTS,
ORIENTADAS A OPTIMIZAR LA EXPERIENCIA DE
SU USO EN LAS REDES SOCIALES. REVISTA
CIENCIA Y TECNOLOGÍA - Para el Desarrollo - UJCM
4, 0 (2018), 185–191.
https://doi.org/10.37260/rctd.v4i0.134

[24] Shubin Yu, Ji (Jill) Xiong, and Hao Shen. 2024. The rise
of chatbots: The effect of using chatbot agents on
consumers’ responses to request rejection. Journal of
Consumer Psychology 34, 1 (2024), 35–48.
https://doi.org/https://doi.org/10.1002/jcpy.1330

[25] Tomáš Zemčík. 2019. A Brief History of Chatbots.
DEStech Transactions on Computer Science and
Engineering (February 2019), 14–18.
https://doi.org/10.12783/dtcse/aicae2019/31439

63

