TEMA 1: Nociones fundamentales Índice 1. Definiciones 1 2. Características 3 Slide 1 2.1. Características de un algoritmo 3 2.2. Características de un procesador 3. Ejemplos 4 4. Calidad 11

Problema \rightarrow solución algorítmica.

Procesador Entidad capaz de entender y realizar un trabajo a partir de su enunciado

Entorno Conjunto de objetos a disposición del procesador, con sus valores

Acción Suceso que modifica los valores del entorno

Slide 2 Acción primitiva (elemental) para un procesad

Acción primitiva (elemental) para un procesador: puede ser ejecutada por éste sin más información que su enunciado

Algoritmo dado un procesador y un trabajo a ejecutar por dicho procesador: el enunciado preciso de una combinación de acciones primitivas que le permitan realizar el trabajo

Entrada Datos que se dan al procesador en una parte del entorno

Elementos de salida Resultados que proporciona el procesador en una parte del entorno

CARACTERÍSTICAS DE UN ALGORITMO

- Datos de salida
- Frecuentemente datos de entrada
- Definido: cada acción debe estar definida como acción primitiva para el procesador, con precisión, sin ambigüedad.
- **Efectivo**: capaz de modificar el entorno y en el sentido deseado (obtener las salidas esperadas a partir de las entradas dadas).
- Finito:
 - en su enunciado ("algoritmo")
 - en su ejecución en cualquier instancia (frente a datos de entrada cualesquiera) ("algoritmo total": consecuencia de la efectividad)

CARACTERÍSTICAS DE UN PROCESADOR

- Acciones primitivas
 - Acción de entrada (lectura) de datos: leer
 - Acción de mostrar resultados: escribir
 - Acciones de cálculo, aritmético (+, -, *, /, ...), lógico y relacional (and, $>, <, \le, =, ...$), etc.
 - . . .
- Entiende ciertas **estructuras de control de ejecución**, y es capaz de obedecerlas, de tipo *secuencia*, *selección* e *iteración*
- Dispone de zonas (finitas) de **almacenamiento de datos** de ciertos tipos (al menos numéricos, caracteres y lógicos), a las que podemos referirnos de alguna manera (nombre, dirección, posición ...)

Slide 3

Slide 4

"Obtener la representación binaria de 15"

"Dividir 51 entre 17"

 $x \leftarrow 51/17$

"Determinar si un un número real positivo es mayor que $\sqrt{2}$ o no"

Slide 5

```
leer x
si x*x >2 entonces
    escribir 'es mayor que raíz de 2'
si no
    escribir 'no es mayor que raíz de 2'
fin si
```

Enunciado Representar en binario un número entero positivo

Entrada Un número n entero positivo (en decimal).

Salida Su representación binaria.

Algoritmo (informalmente) Dividir el número entre 2. El resto (0 ó 1) es el bit de menor peso. Repetir el proceso con el cociente. Terminar cuando el cociente sea 0.

Slide 6

Características

Entrada-Salida

Efectividad "Funciona", según la matemática elemental.

Definición El procesador es capaz siempre de dividir por 2, obteniendo cociente y resto. Entiende la estructura de repetición, y es capaz de determinar si un número es 0 ó no.

Finitud Como n es positivo, y se divide por 2 "sucesivamente", antes o después acabará siendo 0.

Enunciado Representar en binario el número 15.

Entrada no tiene. (No hay instancias del problema. En el enunciado están todos los datos necesarios) .

Salida 1111.

Slide 7

Algoritmo Escribir 1111.

Características

Entrada-Salida

Efectividad "Funciona", según la matemática elemental.

Definición El procesador es capaz de escribir 1111.

Finitud Evidente.

Enunciado Dado un número real positivo, determinar si es mayor que $\sqrt{2}$ o no

Entrada Número real positivo x

Salida 'Es mayor que raíz de 2' ó 'No es mayor que raíz de 2'', según el caso .

Algoritmo El descrito antes.

Slide 8

Características

Entrada-Salida

Efectividad Se sabe que $x^2 > 2$ si y sólo si $x > \sqrt{2}$

Definición El procesador es capaz de multiplicar un número por otro (en particular por sí mismo) y de comparar un valor con otro.

Finitud Evidente. Un real positivo es mayor que 2 o no lo es.

Enunciado Calcular $\sqrt{2}$

Entrada -

Salida El valor de $\sqrt{2}$.

repetir

Algoritmo Tomar x=1 e y=2. Como $x<\sqrt{2}< y$, la raíz estará entre x e y: tomar el punto medio, m=(x+y)/2. Si m es mayor que $\sqrt{2}$, repetir el proceso tomando como nuevos extremos los valores de x y m. Si no, repetir con m e y

Slide 9

```
calcular m=(x+y)/2

si m*m>2 entonces y= valor de m

si no x= valor de m

fin si

hasta que x=y

escribir x
```

Características

Entrada-Salida la descrita.

Efectividad el procedimiento funciona, según la matemática y la lógica elemental: se está acotando $\sqrt{2}$ entre dos valores. Cuando se escriba x, tendrá que tener el valor deseado.

Definición El procesador es capaz de multiplicar un número por otro y de comparar un valor con otro. Entiende las estructuras de selección y repetición empleadas.

Finitud En cuanto al texto, es finito. La ejecución no puede ser finita: nunca se llegará a escribir x

Máquina virtual: representación de datos.

 $\sqrt{2}$ es irracional. $1.414213562373095E{+}000$

 $|m^2 - 2| \simeq -3.5 * 10^{-16}$

Slide 10

Calidad de programas

Ausencia de errores: hacer lo que se le pide: responder a las entradas previstas con los resultados esperados.

Conformidad con las especificaciones: no hacer lo que no se le pide.

Eficiencia: mínima utilización de recursos (tiempo y espacio).

Robustez: resistencia a un medio hostil.

Mantenibilidad: mínima resistencia a cambios (especificaciones, corrección de errores, ...).

Transportabilidad: mínima resistencia a cambios en el sistema.

Claridad de diseño.

Slide 11

Documentación: interna y externa.