
1

1. Introduction to object-orientation.

There is little that is new in object-oriented software development. Its main
ideas have been around for over two decades since the development of the
programming languages Simula and Smalltalk. It is now a well-established
technology, and its advantages are well understood. If only we could learn to
use it well, we should be able to build high quality software systems which

are modularised and decentralised;

are factored around data rather than processes;

are built using existing well-tested components;

promote the development of new components;

are easy to understand and maintain;

are better able to withstand change;

allow a relatively seamless transition from analysis
through to design and implementation

Older approaches are however still very much in evidence, and most
readers of this text are likely to have had some exposure to more traditional
approaches to software development. This chapter begins therefore by
comparing the process-oriented and object-oriented approaches to software
development. It also provides an introduction to the main concepts of object-
orientation, and concludes with an introduction to the Eiffel programming
philosophy and language.

1.1 Process-oriented software development: a text formatter

Process or functional approaches have dominated software design since the
beginning of computing. Systems developed in this way are conventionally
subdivided into relatively abstract sub-functions, which may be further
subdivided into sub-functions recursively until, at the bottom of the hierarchy,
there are the primitive operations which perform the actual computation. Such
an approach was particularly well suited to designing systems for the
commercial batch applications for which the COBOL language has been
primarily used. It was also well suited to the design of text processing systems

 Eiffel Object-Oriented Programming 2

such as compilers and formatters. As an example we may take a text processor
which which has a file of text with embedded print directives as its input, and a
print file with appropriate paragraphing and indentation as output, as shown in
figure 1.

Process TextText File Print File

figure 1

The process involves transforming the information read from the input file into
that suitable for the output file. Such systems are typically decomposed as
shown in figure 2.

1.1 1.2 1.3

Process Text

Do Main
Process

Do Initial
Process

Do End
Process

figure 2

The above abstract solution indicates the sequence of operations: sub-processes
are executed from left to right. The sub-processes could be subroutines, or in
larger systems they could be separately compiled programs.

Initial processing conventionally includes the initialisation of data items
and the opening of files. End processing consists mainly of closing the files,
and possibly the output of summary totals if required - e.g. number of words,
number of lines, number of pages and so on.

The main process requires an iteration or loop which indicates that each
line of the source text must be processed until the end of the source file is
reached:
 1.2 Main_Process
 do until End_Text_file

1.2.1 Read Line of Text

Introduction to object-orientation 3

 1.2.2 Process Line of Text
end -- Do Until

end Main Process
The above algorithm also indicates that the sub-processes Read Line of Text
and Process Line of Text must at some stage be refined. A possible solution for
the second is shown below:

1.2.2 Process Line of Text
 if first char is a format character

 then Process Format String
 end - - if
 write text to file

end Process Line of Text
This would then require further refinement of Process Format String e.g. /P/
might indicate a new page, /8/ might indicate indent 8 spaces and so on.

 As already indicated this problem is a relatively simple one, which is
easily solved using a process-oriented approach. In order to illustrate the
difference between the two approachs, the next section solves the same problem
using an object-oriented approach.

1.2 An object-oriented approach to developing a text formatter

An OO developer would take a totally different approach, and would seek to
identify objects or classes of object in the system. (For the moment no
distinction will be made between a class and an object - see section 1.4)
Obvious candidates in this case would be
 text file

print file
Less obvious might be
 line of text

format string
In addition a controller, called TEXT_FORMATTER, might be specified.
While not essential, it is frequently useful to have such an object. The
application, consisting of five objects, could be described as follows:

TEXT_FORMATTER sends a message to TEXT_FILE
asking it for a line of characters. TEXT_FILE reads a line of
characters from disk, and passes a line of characters back to
TEXT_FORMATTER; TEXT_FORMATTER creates a
LINE_OF_TEXT from the line of characters, and asks the
LINE_OF_TEXT to send itself to PRINT_FILE; the
LINE_OF_TEXT checks whether it contains format

 Eiffel Object-Oriented Programming 4

characters, and if it does then creates a FORMAT_STRING
and asks it to send itself to PRINT_FILE; it then sends its
character string to PRINT_FILE, and returns control to
TEXT_FORMATTER. TEXT-FORMATTER repeats the
process until TEXT-FILE can provide no more lines of text.

The result of approaching development in this way is to decompose a
system into units based not on function, but on data. The text file and the print
file are obviously data structures, the line of text is likewise a sequence of
characters, which may be simply a string of printable characters such as
 This is a line of text
or may include a format string
 /8/
which is a sequence of characters enclosed by "/", which have a particular
meaning within the context of our system.

The only object which is not a data structure is the controller,
TEXT_FORMATTER. It could of course be eliminated, in which case
TEXT_FILE or PRINT_FILE would become the controller.

Some designers might argue about the need for FORMAT_STRING,
which is also not essential. Clearly there are losses in efficiency in having such
an object, but there are also potential maintenance gains. If, for example, an
additional set of allowable embedded commands was introduced, the only
component which would need to be amended would be FORMAT_STRING.
The ability to isolate the effects of change is one of the essentials of developing
maintainable software.

 The relationships between the objects may be analysed as follows:

Object Collaborators

 TEXT_FORMATTER SOURCE-FILE PRINT-FILE
 LINE_OF_TEXT
 SOURCE_FILE
 PRINT_FILE
 LINE_OF_TEXT FORMAT_STRING
 FORMAT_STRING PRINT_FILE

It can be seen that the two file handling objects are purely passive: they respond
only to calls, and need no knowledge of any other objects within the system. If
TEXT_FORMATTER were eliminated, and SOURCE_FILE or PRINT_FILE
to be made the controller, then the one selected would need to collaborate with
other objects.

Introduction to object-orientation 5

One advantage of this approach is that each object could be
implemented, compiled and tested separately, even by different programmers,
although for such a small system this would be most unlikely.

The tasks required to produce a formatted print file would be distributed
in the object-oriented system as indicated below:

Object Task

 TEXT_FILE opens file
 closes file
 reads a line of characters from disk
 passes string of characters back to caller
 PRINT_FILE opens file
 closes file

writes to disk a character string passed in by caller
LINE_OF_TEXT separates into format string and character string

 creates FORMAT_STRING
 asks FORMAT_STRING to write itself to

PRINT_FILE
 sends its own character string to PRINT_FILE
 FORMAT_STRING sends appropriate characters (spaces, control

characters) to PRINT_FILE
TEXT_FORMATTER

asks files to open themselves
asks files to close themselves
controls process

The development of the last object would be done later than in the process-
oriented approach illustrated earlier. TEXT_FORMATTER might however, be
used as a harness to test each object in turn as it was completed. Once testing
of separate objects was finished, the code required to control the system could
then be inserted in TEXT_FORMATTER:

ask files to open themselves
 do until no more lines of text to process
 get string of characters from SOURCE-FILE
 ask LINE_OF_TEXT to print itself on PRINT_FILE
 end -- do until

ask files to close themselves

 Eiffel Object-Oriented Programming 6

 Should it be required, it would be relatively simple to dispense with
TEXT_FORMATTER, and to transfer this small amount of code to one or the
other of the file objects as previously suggested.

1.3 Object-oriented and process-oriented approaches compared

The difference between an object-oriented and a more conventional top down
approach may be summarised as follows:

1. a conventional developer divides a system into program units
corresponding to the operations or processes which it must perform;
an OO developer decomposes, or modularises, systems around
objects, which are a combination of data and functionality;

2. a conventional developer views a system as a sequence of
operations; an OO developer views a system primarily as a collection
of objects which collaborate with each other to perform a set of tasks;

3. in a conventional top-down system a sub-process should be called
only by a single higher level process; within an OO system an object
may respond to requests for services from any other object;

4. whilst sequence is not important to an OO developer, the state of
an object at the point when it is requested to perform some action is a
concern: it may be necessary to stipulate what conditions must hold
at the time when an object is asked to perform an action. For
example, going back to the text formatter, it might be agreed that
TEXTE_FILE should not be asked to produce a line of text if it is
empty - the caller would be required to check that TEXT_FILE could
supply a LINE_OF_TEXT before asking it to do so. This is known
as a precondition, and is fundamental to Eiffel programming as will
be shown later.

Finally, it should be emphasised that object-oriented techniques are
particularly suited to modern interactive systems, as will be illustrated by the
introduction of a second example, a word processor. The process-oriented
approach is less satisfactory for designing event-driven interactive systems
which have no real top function, and no clearly defined sequence of operations.
It would be difficult to define the top function of a word processor, which must
simply wait for a user to press a key or to click a pointing device.

Introduction to object-orientation 7

A developer who wished to design a word processor would again begin
by identifying the objects or classes in the system. Candidates for initial
consideration would include
 menu text pane
 block of text text buffer

file
as shown in figure 3.

this is another way of saying that he is not ready

so whatever is done had better be done
the final date will not be available for some time yetSave

Cut

Paste

Load

Quit

Block of Text

Text PaneMenu

File Text Buffer

Components of a word processor

figure 3

Further investigation might eliminate some of the above, and might include one
or two that have been overlooked. The application would for example need a
mechanism to handle events - inputs from the keyboard and a mouse. This is
system dependent however, and will not be discussed abstractly.

Once a preliminary list of objects has been defined, the designer must
then try to work out the role of each in the system. This process should expose
redundancies and also gaps in the set of objects proposed. This involves
questions such as

what actions must this object be able to perform?
what does it know? what data must it store?
which other objects does it collaborate with?

In practice some of the objects mentioned, such as MENU, would probably be
available in the class library.

The benefits of an OO approach in designing systems which involve
graphical user interfaces ought to be fairly readily apparent :

 Eiffel Object-Oriented Programming 8

the kinds of object defined above are likely to be common to
many GUI applications;

it is possible to build systems by reusing existing components,
or to produce as a by-product well-tested components which
may be reused in other applications;

it is easier to make changes to a system designed around
objects, such as pane, and menu - which are relatively stable
- rather than functions such as 'cut and paste' , 'load file' and
'save as' which are less stable.

Finally, as will be explained in the following section, in practice the OO
developer would design classes of object rather than single objects. Rather than
individual objects, classes such as TEXT_WINDOW and MENU would be
used. This would for example make it relatively easy to have more than one
window, each with its own menu. Without this capacity to create more than one
object of the same class, the development of a multi-windowing word processor
would be difficult to achieve.

1.4 Objects, Classes and Message Passing

The basic ideas of an OO approach to are deceptively simple. The fundamental
concepts are those of objects, classes and message passing:

An object is:
(i) an entity in the real world application being modelled or in the

computer environment in which the application is being implemented;
(ii) an instance of a class created at run time; it has state and

behaviour.

Objects interact by sending messages or requests to each other and
sometimes to themselves.

A class is a template from which objects may be created at run time.
In most languages we design classes not objects. This allows us to
instantiate more than one object of the same class when a system is
executing.

A conventional notation for describing classes of object is shown in figure 4. In
the top sector the name of the class is given. In the middle sector the data

Introduction to object-orientation 9

variables that are used to store the state of an object of that class are listed, and
in the bottom sector the services which an object of that class offers to a client
are listed. The terminology for the last sector varies - there is no standard
terminology throughout the OO community - sometimes it may be referred to as
the methods of a class, or as the messages to which an object of a class will
respond. In Eiffel the services are known as routines, and the messages are
known as calls.

name

data

services

STATE

BEHAVIOUR

figure 4

The notation is used in figure 5 to model LINE_OF_TEXT, which was
described in the first example above. Each object of this class would contain a
single data item, a string of characters, such as

"Do not go gently into that good night"
or

"/8/ Come into the garden Maud"
and would need to respond to one message only, to print itself on a file:

 Eiffel Object-Oriented Programming 10

LINE_OF_TEXT

character_string

print_on_file

figure 5

The tasks which an object of this class is required to perform:
separate into format string and character string

 creation of FORMAT_STRING
message to FORMAT_STRING to write itself to PRINT_FILE
sending of its own character string to PRINT_FILE

are not services offered to other objects in the system; they are auxiliary actions
necessary to enable a LINE_OF_TEXT to carry out the request:

print yourself on file.
An external caller knows nothing about FORMAT_STRING, and would not be
able to request LINE_OF_TEXT to carry out any of the first three actions.This
logically leads on to the concept of information hiding which is covered in the
next section.

1.5 Information hiding

A key idea of object-oriented development is that of abstraction: hiding
implementation details from the clients of a class. It is useful to distinguish
between the interface to a class, and its internal mechanisms, between the
public part of a class, and its hidden or private part. This distinction is
important, because it allows the internal mechanisms of a class to be protected
from outside interference, and at the same time allows us to provide a more
abstract, simpler view of a class.

To return once more to class LINE_OF_TEXT: externally it may be
viewed as consisting of simply one service, and one data item; this is all that
the caller needs to know. The implementor, however, will need a different, less

Introduction to object-orientation 11

abstract view: to know about FORMAT_STRING and PRINT_FILE, about
which the caller of LINE_OF_TEXT need have no knowledge.

A real world analogy may be used to illustrate this: a car There are at
least two views of a car:

1. that of the driver who controls it through the interface supplied:
control panel, steering wheel, brakes, accelerator pedal;

2. that of the mechanic (who may also be the owner and sometime driver
of the car) who monitors the collection of components hidden under the bonnet
whose proper functioning are necessary to provide the services required by the
driver;

It is not necessary for a driver to have much knowledge of what exists
under the bonnet, and it is thankfully not necessary to directly manipulate the
axles, brake pads, carburettor, gear box and other components in order to drive
a car. A simpler interface is provided. So it is with software components. All
object-oriented environments should provide mechanisms which may be used to
restrict access to data and behaviour and to provide an abstract external view of
the facilities which a class makes available.

The concepts of class, object, message passing and information hiding,
which have now been introduced are fundamental to an understanding of
object-orientation. The concept of inheritance must now be introduced.

1.6 Inheritance

Inheritance is an important facility provided by all class based object-
oriented languages. It is a mechanism which allows classes to be designed so
that common behaviour and data may be factored out and implemented at a
high level in a class hierarchy. The most general classes in the hierarchy are at
and towards the top, and the most specialised classes are at the bottom.

This is illustrated in figure 6. The root of the hierarchy is VEHICLE, an
abstract class. LIGHT_VEHICLE and HEAVY_VEHICLE are also abstract:
the reader would not normally say "I am going out to buy a light vehicle", but
"I am going to buy a car" or "I am going to buy a van". There might be more
than four actual classes, but classes such as HONDA, ROVER, MERCEDES,
CHEVROLET would not be allowable. Like engine size, model, and year, these
are attributes of a VEHICLE, not specialisations of CAR.

 Eiffel Object-Oriented Programming 12

VEHICLE

CAR

LIGHT

VAN

HEAVY

BUS LORRY

VEHICLE VEHICLE

Inheritance as specialisation

figure 6

It should be noted that the relationship between a descendant class and an
ancestor class is often described as an is-a or a is_a_kind_of relationship. In
the above example we could say that a car is a light_vehicle, and a
light_vehicle is a vehicle, but in each case the reverse is clearly not true: a
light_vehicle is not a car. These ideas are explored further in chapter 9.

As well as allowing the design of hierarchies of classes from scratch, an
inheritance mechanism is frequently used to create a new class out of an
existing class. This allows data and behaviour to be reused, as well as the
addition and redefinition of data and behaviour in the new class.

The basic idea of inheriting behavious can be illustrated by going back to
the word-processor example. We might decide that a TEXT_PANE should be
able to perform the following services for clients:

open close
scroll up scroll down
insert n lines at relative position x,y delete n lines at position x,y
save contents to file load contents from file
copy from buffer copy to buffer
move cursor to relative position x,y move cursor up/down
move

We might find that in our class library we have a class PANE, which fulfills
most of the required functionality, but does not have facilities for the following:

scroll up scroll down
move cursor up/down/ save to buffer
copy from buffer copy to buffer
save contents to file load contents from file

In this situation class TEXT_PANE could inherit from PANE, and the
additional facilities required could be developed in the new class. The new

Introduction to object-orientation 13

class would probably require data to keep track of the associated file and text
buffer, and some new services. For the following services the code provided in
PANE could be reused:

open close
 move cursor to relative position x,y move

insert n lines at relative position x,y delete n lines at position x,y
The location of the services in the hierarchy is shown in figure 7.

PANE

scroll-up
scroll_down

TEXT_PANE

copy from buffer
copy to buffer
save to file
load from file
move cursor up/down

move cursor to x,y

insert lines

open
close

delete lines

move

Inheriting behaviour from PANE

figure 7

The inheritance mechanism would allow any instance of class TEXT_PANE to
provide the full list of services required, without rewriting or copying any code,
and without making any alteration to PANE itself.

If the class library did not provide a MENU, it would be possible to
develop this also as a descendant of pane, as shown in figure 8.

 Eiffel Object-Oriented Programming 14

PANE

MENU

pop_up
hide
return selection

initialise

TEXT_PANE

open

insert lines

close

delete lines
move cursor to x,y

move

Inheriting unsafe behaviour

figure 8

In this case however, inheritance presents potential dangers; a user of MENU
should be prevented from accessing the services displayed in bold face. In this
situation the use of inheritance might not be the best solution, and the client
relationship might be better.

1.7 The concept of client

The concept of a client is rarely highlighted in texts on object-oriented
programming. It is, however, an important part of object-oriented software
development, and merits an early, albeit brief, introduction.

A class may be said to be a client of another if it uses that class. The
most common case is known as the has-a relationship: a VEHICLE has an
engine, has a colour and has a manufacturer or make. It would be wrong to say
that a VEHICLE is a kind of ENGINE, is a kind of COLOUR or is a kind of
MAKE. Engine, wheel, colour and make are attributes of a VEHICLE, and
VEHICLE is therefore a client of ENGINE, COLOUR and MAKE. Often the
choice between an inheritance relationship and a client relationship is not as
clear cut as this, as will be found in later chapters.

This concludes the discussion of object-oriented concepts. The chapter
concludes with a brief overview of the Eiffel language

Introduction to object-orientation 15

1.8 An overview of the Eiffel Language

This section is aimed largely at those with prior knowledge of object-
orientation. The brevity of treatment means that those with less experience will
find that much that follows will prove difficult on a first reading. It should,
however, serve as a useful reference as the topics are covered in later chapters.

Classes

The modular unit is the class: we write classes and only
classes. An Eiffel application is characterised by a structured
collection of classes, one of which must be specified at
compile time as the root class.

Objects are not recognised as part of the syntax of Eiffel. An
object is an instance of a class, created at run-time.

Eiffel allows only two relationships between classes: the
inheritance relationship and the client relationship.

The syntax of the root class does not differ from that of any
other class. It must have a creation routine, which contains
the code which executes immediately a system is activated.

Other classes may also have creation routines, which must be
invoked when an instance of the class is created.

Abstraction

There is no separation between a class interface and a class
implementation in Eiffel. An Eiffel environment should
provide a tool to generate an interface (a short form), from an
Eiffel source file.

Eiffel supports information-hiding. All attributes are read-
only. Both routines and attributes may be made private, or be
made available to specific named client classes.

Descendants may alter the external visibility of inherited
features.

 Eiffel Object-Oriented Programming 16

Class Features

An instance of a class has data, known as attributes, and
behaviour, known as routines. Both attributes and routines
are known as the features of a class.

Each attribute has a defined class type. The Eiffel type system
is based on the notion of class.

Routines may return a result; the result-type is declared at
compile time.

Routines may have parameters; these are known as
arguments in Eiffel. Eiffel supports only call by value, so that
arguments may not be used to pass back a result. Each formal
argument must be declared with a class type.

Eiffel allows for the declaration of local variables within a
routine; it does not support the nesting of routines.

Eiffel supports recursion.

Inheritance

Inheritance in Eiffel is open: a class may not limit the
facilities available to descendants, nor can it restrict certain
facilities to specified descendant classes; such a facility would
run counter to the emphasis on reusability and to Meyer's
'open and closed' philosophy.

Facilities are provided for adapting inherited features: these
include renaming, redefinition, changing visibility (re-export)
and undefinition (making a feature deferred).

Eiffel provides for multiple and repeated inheritance, for
deferred (or abstract) classes and for generic classes.

Instructions

In Eiffel statements are known as instructions.

Introduction to object-orientation 17

Eiffel enforces the message-passing metaphor: it is not
possible to include a file of arbitrary functions or procedures,
and every call to a routine must have a target. When the
current object is the target, the target may be implicit, but it
can be made explicit by using the identifier Current.

Except in the case of the basic types, assignment is pointer
asignment, and a test for comparison of two objects yields
true only when an object is compared with itself.

Eiffel provides a small set of control instructions:
Loop
Conditional
Multi-branch

Control instructions may be nested.

Library facilities

Eiffel is a small language, and many facilities, including
input-output, arithmetic operators and relational operators
(except for the '=' operator) are provided in the class libraries
rather than as part of the language.

All classes in Eiffel inherit from class ANY which inherits
from GENERAL. This class includes a number of standard
routines including those used for copying and comparing
objects which may be used by instances of any class.

Standard classes in Eiffel (INTEGER, REAL, CHARACTER
DOUBLE) are implemented as expanded (non-reference)
types.

The language itself has no data structuring facilities other
than the class itself. Standard data structures (ARRAY,
LIST), and STRING, are supplied in class libraries.

Memory management

 Eiffel Object-Oriented Programming 18

By default Eiffel classes are implemented as references.
Instances must therefore be explicitly allocated memory by
the programmer using a creation instruction.

No deallocation of memory is required. All Eiffel systems
include a garbage collector which keeps track of the memory
allocated to a system during its execution, and reclaims
memory no longer required. This is consistent with the desire
to build a high level abstract language: in such an
environment it is inappropriate to require programmers to
manage memory.

Design by contract

The use of assertions is central to Eiffel programming.
Assertions allow system builders and programmers to reason
about the behaviour of instances of classes; they serve as an
important tool in specifying classes, documenting classes,
and, because of the run-time support provided by all Eiffel
systems, in testing and debugging classes.

Preconditions define what must be true on entry to a routine,
postconditions define what is guaranteed to be true on exit
from a routine.

There are also class and loop invariants, loop variants, and
facilities to aid debugging and to handle exceptions.

Exercises

1. Make notes on each of the following: attribute, service, object, class,
message-passing , information hiding.

2. Identify the main uses of inheritance covered in the chapter. Why might it
be unsafe to make MENU inherit from PANE?

3. An information system is being developed to store course results for a
University Department. The department has a number of courses. Each student
is on a single course. Each course has a full-time and part-time variant, and is
composed of a collection of modules. Each student takes a collection of modules
each semester. A module is taught by a lecturer and is taken by a collection of

Introduction to object-orientation 19

students. Each student has a mark for each module taken. The following classes
have been identified:

DEPARTMENT COURSE MODULE STUDENT
LECTURER MARK COLLECTION
FULL-TIME PART_TIME

a) A model is being constructed from the above description. Which of the
following seem correct?

i) course: has a collection of students; has a lecturer;
has a collection of modules is a collection of modules;

ii) part-time course has a course;
iii) full-time course is a course;
iv) a student has a collection of modules;
v) student is a collection of marks;
vi)department :

is a collection of students; is collection of courses
has a collection of students is a collection of lecturers

b) class MODULE is required to fulfill the following services:
display the lecturer name
is lecturer Y responsible for this module?
display the collection of students and their marks
is student X taking this module?
what is the mark for student X on this module?
what is the average mark of this module?

DEPARTMENT has a collection of COURSES. In order to answer a request
such as, print out the results for student Y , might require the following
scenario:

"For each course in the collection, DEPARTMENT asks the COURSE
whether student X is on the course; if the answer is yes then DEPARTMENT
asks the COURSE to display X's marks. For each module in the collection,
COURSE asks the MODULE if X is taking the module; if the answer is yes
then COURSE asks the MODULE for the mark, and when it receives it,
displays it on the screen."

i)Work out a suitable list of services for class COURSE
ii) Write scenarios showing how class DEPARTMENTcould use the

services provided by COURSE and MODULE to achieve the following
how many courses do you have?
what is the average mark for module X?
what is the average mark for student Y?
display the list of marks for module Z.
display the average marks for the modules taught by

lecturer XYZ.

19

2. Writing a Simple Class in Eiffel

The reader should already have gathered the following from chapter 1:

a class may be defined as a template from which
objects may be created;

in Eiffel a class is also the basic program unit: we
write classes, and only classes;

every Eiffel application must have a single root
class; conceptually the application may be thought of
as an object of this class

the root class must include a creation routine which
is executed when a system is loaded;

other classes may or may not have creation routines.

This chapter begins with a simple root class, which the reader is
encouraged to enter and compile, and continues with exploration of input-
output in Eiffel. The example root class is used to introduce a number of basic
concepts, including attributes, call instructions, assignment instructions, and
type. The most difficult material covered is likely to be that on reference types
in section 2.8, to which an inexperienced reader may wish to return at a later
stage.

2.1 The syntax of an Eiffel Class

The syntax of an Eiffel class is shown in very simplified form below.

class <class_name>
[creation

<routine_name>]
feature

{routines | attributes }
end

In our notation the special symbols used, known as meta-symbols, have the
following meaning:
 < > contains a user-defined name

{ } an iteration indicates that the constructs
within the brackets occur 0 or more times

Eiffel Object-Oriented Programming 20

 | indicates an alternative, either the construct
to the left or the right must be selected

[] indicates an option
All keywords are in bold type, and user defined names are in italics.

The definition above indicates that a class begins with the keyword,
class, and is terminated by end. The class name is a user-defined name. After
the class heading there is an optional creation-part, in which the name of the
creation routine is specified. In some cases more than one creation routine may
be specified, but this is relatively unusual. A class feature may be either an
attribute or a routine. Class features are introduced by the keyword feature
which may appear more than once in a class.

As a first example we shall look at an Eiffel root class which produces
output on the screen. This class, which is called SIMPLE, is extended in the
early chapters of the book to illustrate the various Eiffel constructs.

class SIMPLE;
creation

 test
feature

 test is
-- outputs a string to the screen

 do
 io.put_string("This is my first Eiffel
class");

io.put_new_line
 end -- test

end -- SIMPLE

Example 2.1 An Eiffel Root Class

A few additional points may be made about the above class:
1. Class names are by convention written in uppercase. The compiler,

however, is not case sensitive, and so makes no distinction between "Simple",
"SIMPLE", "simple" or even "siMPle. Both "SIMPLE" and "test" are user-
defined names. Keywords may not be chosen as user-defined names.

2. The above class contains three comments. Comments in Eiffel are
preceded by a double hyphen :

-- This is a comment
Comments are intended to make the class text more readable; they are ignored
by the compiler. It is a sensible idea to use comments to write the name of a
class or a routine at the end, as shown in the example above.

3. The above class has a single feature, a routine, test. Usually a class
will have several features.

Writing a Simple Class in Eiffel 21

4. The routine test is specified as the creation routine. When the class is
executed, the body of test - the instructions written between the keywords do
and end - are executed. In this case there are two instructions only, and both
are calls to io. When SIMPLE is compiled , linked and executed the message

This is my first Eiffel class
should duly appear.

2.2 The Eiffel environment

In order to execute class SIMPLE, the reader needs to know how to enter text
using the editor provided in the environment being used, and how to invoke the
compiler. It is also necessary to know a little about ACE files.

 As already indicated, class SIMPLE is intended to be a root class, that is
to say that it may be compiled, linked and executed on its own, with support
from the kernel library. In order to try the above example, the source code
should be entered using an appropriate text editor, and should be saved in a file
with a .e suffix, which is used for all Eiffel source files.
 The programmer may now call the compiler. In SmallEiffel the
following would be entered:

compile simple

SmallEiffel assumes that the creation routine is called make, if not then the
name of the creation routine must be specified. Users of ISE Eiffel will need to
edit the default ACE file.

The compiler checks SIMPLE against the rules of Eiffel. Provided no errors
have been made, the compiler generates C code, it then calls the C compiler to
create object code, and finally calls the linker to create an executable file. The
application may then be run either by clicking on the appropriate icon, if using
a graphic environment, or by entering the name of the executable, which was
defined in the ACE as example1.

The reader will notice that when SIMPLE is compiled, a number of
other classes from the Eiffel library are required, and the executable file
produced by the linker is rather large for a system that does so little. This is
because any Eiffel application, however small, requires a minimum of support
from the kernel classes. The size of an executable does not therefore increase
significantly for larger systems.

2.3 Call instructions

The call instruction is a fundamental of object-oriented programming and of
Eiffel. It is a request by one object for action from another. In Eiffel it takes the
form of a call to a routine defined in a client class. The first of the calls has
three components, as shown in figure 1.

Eiffel Object-Oriented Programming 22

put_string "This is my first Eiffel Class"io

target routine argument

figure 1

The second call is similar, but has no argument. It simply moves the cursor to
the next line on the screen.

A call must by definition have a caller as well as a target. In the above
cases the caller is an instance of the root class SIMPLE, and the target is io,
which is an instance of class STD_FILES, which may be accessed by an
instance of any class (see section 2.4). Sometimes an object may call itself. In
such cases the target is implied, and a call consists solely of the routine name
and any parameters required. The predefined identier Current may be used to
make the target explicit.

2.4 I-O in Eiffel

Basic input-output facilities in Eiffel are provided by the class library. To do
basic input and output using the screen and keyboard in Eiffel we must, as
shown already, make a call to an instance of class STD_FILES, or in the case
of SmallEiffel, STD_INPUT_OUTPUT. In most cases the call is made to io,
 io.put_string;

io.read_integer
Io is defined in class GENERAL. Each class in an Eiffel system automatically
inherits from ANY, which itself inherits from PLATFORM, which inherits
from GENERAL. In most ISE implementations GENERAL should contain the
following entry:

io :STD_FILES is
once

!!Result
end -- io

and in SmallEiffel
io : STD_INPUT_OUTPUT is
once

!!Result
end -- io

which returns a shared copy of io.

The following table lists the basic facilities available for input-output provided.

IO in Eiffel

Writing a Simple Class in Eiffel 23

Attributes (Data)
last_character:CHARACTER
last_integer:INTEGER
last_real:REAL
last_string:STRING
last_boolean :BOOLEAN

Output routines
put_character(c:CHARACTER)
put_integer(i:INTEGER)
put_real(r:REAL)
put_string(s:STRING)
put_boolean(b:BOOLEAN)
put_new_line

Input routines
read_character
read_integer
read_real
read_line -- result stored in last_string
read_word -- result stored in last_string
read_boolean

The above features have been divided into three categories. The last
cataegory defines the operations used for input, the second category defines
those used for output. The first category defines the attributes or state variables,
which are used to store the last item read from the keyboard by the
corresponding input routine. So for example
 io.read_character
takes a character from the keyboard and transfers it to last_character. To
access last_character we must refer to it as

io. last_character
Some readers may have noted that Eiffel uses the same dot notation for
accessing a routine and an attribute. More experienced programmers may
wonder why input in Eiffel is handled in this way. It would have been possible
to have implemented last_character as a routine which read the keyboard and
returned the character immediately to the calling routine. The use of a side-
effect in a function is generally considered to be bad practice however, and this
solution was deliberately rejected by the language designer. For similar reasons
Eiffel provides no call by reference or variable parameters. Readers who wish to
pursue this further are recommended to read Meyer (1988) for the discussion of
side effects in functions.
 It may be noted that there is no state variable for. This routine reads the
keyboard until it finds the newline character; it is not required to return

Eiffel Object-Oriented Programming 24

anything, and so has no associated variable. It is used simply to move the cursor
so that subsequent input-output is on the next line.

2.5 The assignment instruction

We have already seen how a string of characters may be displayed on the screen
using put_string. This section illustrates the use of additional i-o facilities and
introduces another fundamental instruction, the assignment.

In the example 2.2 the body of the routine test, contains a sequence of
instructions, which display the product of two integers on the screen. In
addition to calls to io, the routine test now contains two assignment
instructions.

class SIMPLE;
creation

 test
feature

first, second :INTEGER;

 test is
-- inputs two integers and outputs their product

 do
 io.put_string("Enter an integer > ");

io.read_integer;
first := io.last_integer;

 io.putstring("Enter another integer > ");
 io.read_integer;

second := io.last_integer;
 io.put_string("Product is : ");
 io.put_integer(first*second)

end -- test
end -- SIMPLE

Example 2.2 Assignment instructions

 The assignment operator, ":=", should be viewed as a left pointing arrow

first io.last_integer

which indicates the direction of the data. When executed, it copies the contents
of the right hand operand into the left hand operand. Thus in the example given
in figure 2, the value 16 is copied from io.last_integer to the attribute first.

Writing a Simple Class in Eiffel 25

Before assignment

After Assignment

first io.last_integer

0

16

16

16

figure 2

Readers with experience of other high level languages will have no difficulty
with the concept of assignment, which is a core concept of imperative
programming. In Eiffel and other O-O languages it is more complex however,
as is shown in the fuller discussion of the semantics of assignment in chapter 6.

2.6 Class attributes

In any object-oriented language a class is defined in terms of data and action. In
Eiffel, both are known as class features. Action in an Eiffel class is encoded in
routines (see chapter 4), and data items are known as attributes. This section
shows how data is declared in an Eiffel class.

In Eiffel, as in imperative languages, a variable is a user-defined name
which refers to a location in the computer's read-write memory. As in other
typed languages, an attribute must be declared with a type, as in example 2.2:

first,second:INTEGER;
Each variable attribute is allocated an area of memory sufficient to store an
item of the attribute's type. The contents of the allocated area of memory may
change during execution. So for example, the instruction

first := second * 2;
would calculate the result of the expression second * 2, and assigns that result
to first - so that if second contained 20, then after execution first would contain
40.

Sometimes it is useful to have a data item whose value is guaranteed to
remain constant throughout the execution of a program. In Eiffel, constants are
declared as shown below:

feature
message:STRING is " enter an integer > ";

 max_loan:REAL is 1500.00;
months:INTEGER is 12;
male:CHARACTER is 'm';

and may be accessed on a read only basis:
io.put_string(message);
io.put_real(max_loan);

Eiffel Object-Oriented Programming 26

io.put_integer(months);
io.put_character(male);
any_integer := months;

The compiler would generate an error if a programmer tried to make message,
max_loan, months or male the target of an assignment instruction.

2.7 Basic Types

In Eiffel the concepts of class and type may for practical purposes be considered
as identical. Every attribute declared in an Eiffel class must have a type. So also
must every local variable, every routine argument and every function. The basic
types available in the language include

INTEGER BOOLEAN REAL
CHARACTER DOUBLE

The basic type DOUBLE is used to give double precision real numbers. Users
who require high precision numbers may wish to use it instead of type REAL.
To declare variables of the basic types the following notation is used:

feature
age:INTEGER;
sex:CHARACTER;
married:BOOLEAN;
balance:REAL;

Type indicates the range of values that may be assigned to a variable, it also
indicates the operations that may be performed on it. For example we may
multiply two integers, but we cannot multiply two chararacters. The following
are examples of valid assignments that could be made to each of the attributes
declared above:

age := 23;
sex := 'm';
married := true;
balance := -23.76

As should already be apparent, the basic types are classes, and more
advanced programmers may be able to gain an understanding of how to use
them simply by studying the listings for classes COMPARABLE, NUMERIC,
REAL, INTEGER, BOOLEAN and CHARACTER in the class library.

In Eiffel. as in a number of programming languages, variables of each
type are assigned a suitable default value. For Eiffel the initial values assigned
are as follows:
 BOOLEAN false
 CHARACTER null character
 INTEGER zero
 REAL zero
Chapter 3 discusses the basic types in more detail.

2.8 Reference types and creation instructions

Writing a Simple Class in Eiffel 27

Before the introduction to Eiffel types is concluded, it should be pointed out
that there are two different kinds of type: expanded types and reference types.
The Eiffel basic types are expanded types. Instances of expanded types contain
the actual value or values, and memory for these is allocated by the compiler, as
shown in figure 3.

an_object 97

figure 3

Instances of reference types contain the addresses of the actual values, and the
memory for the actual data must be allocated dynamically (figure 4).

an_object

97

address

memory allocated at run-time

figure 4

Instances of reference types require explicit creation instructions, whereas the
basic types require no such instructions and are given default values as
indicated earlier. It is possible to develop expanded types, by using the heading,
expanded class. All the examples developed in this text will, however, be
reference types.

 This section concludes with an example of a creation instruction. Class
STD_INPUT_OUTPUT is a reference type, and we may, if we wish, have our
own copy of it, as opposed to the shared one inherited from class GENERAL.
To do this we would declare it as with any other attribute:

my_io: STD_FINPUT_OUTPUT
but before using it we would need to ensure that memory was allocated to it by
using an explicit creation instruction:

!!my_io
Unless this was done, the value of my_io would be Void, as depicted in figure 5,
and any attempt to reference it by a call such as my_io.put_string("This is my

Eiffel Object-Oriented Programming 28

first Eiffel class") would result in a run-time error. The creation instruction
therefore, is necessary in order to allocate memory at run-time to store the data.

my_io Void

figure 5

Finally, for completeness, it should be pointed out that if a reference
class has a creation routine specified, then that routine must be invoked when
an object of that class is created. So for example, take a class ANY_CLASS,
which has a creation routine make specified. To create an_object of this class
requires the following instruction

!!an_object.make;
if make required an argument then this would have to be included in the
creation instruction, e.g.

!!an_object.make(100)

2.9 Strings

Type STRING in Eiffel is not a basic type, but is a special type in the Eiffel
system. It is, like STD_FILES a reference type. Strings are denoted in the class
source text by using double quotes:

"This is a string".
Examples of their use as output and as constants

io.putstring("This is my first Eiffel class")
message:STRING is " enter an integer > ";

have already been encountered. It is also possible to declare variables of type
STRING

name:STRING
to input strings, and to make assignments to variable attributes of type
STRING.

io.readstring;
name := "Mel Giedroyc"

It is also possible to use some of the relational operators to compare two strings.
Full treatment of this and other aspects of string handling is given in chapter 7.

2.10 Special characters

Writing a Simple Class in Eiffel 29

 A number of special characters may be used in strings. The most useful of
these is perhaps the new line character, which may be appended to a string

io.putstring("This is a string%N");
This would ensure that subsequent input-output was on the next line, and so
would remove the need to make a separate call to the new_line routine.

The use of the '%' character therefore, plays a special role in Eiffel. If
this character is to be displayed, it needs to be entered twice:

io.putstring("50% %");
Further examples of its use are,

io.putstring("%"This is in quotes%"");
which would produce the output

"This is in quotes"
and

%'
which may be used to assign the single quotation mark to a character variable:

aChar := '% '';
and

aChar := '%U';
 to assign a null character to a character variable. A full list of special
characters is given in the appendix.

2.11User-defined names

In any programming language a programmer must select names for variables
and routines. These should be as meaningful as possible, to aid readability and
maintenance of the program, by the author and by subsequent programmers.
This is important for all programming, and especially for object-oriented
programming which aims to produce reusable, quality code. The reader is
recommended to look at the Eiffel class libraries as good models of clarity and
consistency.

The rules for forming identifiers in Eiffel are designed to aid the use of
sensible names. Identifiers must begin with a letter, and may include digits and
the underscore character. There is no limit on length, and programmers are
encouraged not to shorten names artificially.The following are all valid:

test test5 arithmetic_test final_year_results
The convention used by Smalltalk programmers of denoting components of an
identifier by an upper-case character is discouraged within the Eiffel
community. Although it is legal to write identifiers such as arithmeticTest and
finalYearResults, the use of the underscore character to separate component
words is preferred.

2.12 Reserved words

Like all programming languages, Eiffel uses some words for special purposes.
These words may not be used as identifiers. There are two categories of
reserved word:

Eiffel Object-Oriented Programming 30

1. Keywords
2. Predefined Names

Keywords are in this text written in bold face, according to convention. The
ones already introduced include class, feature, do, end. Key words are by
convention always written in lower case although, as mentioned earlier, Eiffel
is not case sensitive. Predefined names include the names of special types, such
as INTEGER. Current, which was introduced earlier in the chapter as the
target in cases of self-reference, is also a predefined name. The full list of
keywords and predefined names is given in the appendix.

2.13 Special symbols

A number of special symbols are used in the language. The text has already
introduced the assignment operator, the single quotation marks used to delimit
characters and the double quotation mark used to delimit strings.The reader is
again referred to the appendix for a full list.

Exercises

1. The following concepts have been introduced in this chapter. The reader is
recommended to make notes on each :

root class creation routine
feature attribute constant type
call instruction argument
assignment instruction

2.Examine the contents of the kernel class library, particularly the universal
classes GENERAL, PLATFORM and ANY, and at STD_FILES.

3. Each of the following amendments to class SIMPLE will produce compiler
errors; some or all should be tried by those inexperienced in using compilers.
Note the error messages produced in each case:

i) declare an attribute of type CHARACTER; try to perform illegal
operations on it (multiplication, addition etc) and to assign it to an

integer;
ii)change the spelling of INTEGER to INTERGER
iii) change the name of the routine test to start, but do not alter the

entry after creation.
iv) delete the keyword do
iv) delete the keyword end which terminates the creation routine
v) delete the target of one of the calls
vi) insert a space between the : and the = of the := operator

4. Amend class SIMPLE so that it prompts a user for information as shown
below:

Writing a Simple Class in Eiffel 31

what is your name (STRING)
what is your age? (INTEGER)
what is your gender? (CHARACTER)
are you married? (BOOLEAN)
what is your salary? (REAL)

Use constant attributes to define the messages that prompt the user for input.
Use variable attributes to store the information read from the keyboard. At the
end of the input sequence, display the information on the screen. Precede each
field with a suitable label, e.g.

Name: Liz McShane Age: 43

5. a)Amend example 2.2 as follows, noting what happens when the application
is executed on each occasion:

i) declare my_io as shown in section 2.8 and try to use it to output
an integer to the screen without any creation instruction;

ii) repeat, i) this time using a creation instruction on my_io
iii) use a creation instruction on the integer attribute first; inspect
the contents of first using put_integer both before and after the
creation instruction;

b) Consider the following:
What is the effect of using a creation instruction on an attribute of a

basic type?
Why is it necessary to use an explicit creation instruction for reference

types?

32

3. Eiffel Basic Types

The previous chapter has already introduced the basic types supported by Eiffel.
This chapter provides examples of operations that may be performed on
attributes of the basic types. First, however, it provides an introduction to the
concept of type.

3.1 Type checking

Type checking is the process which allows the compiler to ensure that a data
item is used correctly. To enable this to happen, a programmer must in a typed
language such as Eiffel, associate a variable with a type:

age : INTEGER;
Typing cannot guarantee the correctness of a piece of software, but its presence
puts restrictions on what a programmer may do, and allows the compiler to
detect a set of errors which would otherwise go undetected and would lead
either to run-time errors or to incorrect results.

In Eiffel, as in other typed languages, it is not allowable to assign a
value of one type to an attribute of another, so

age := 'B'
would not be allowable; if it were then consider the results of trying to perform
an arithmetic operation on age, for example

io.putint(age + 1);
which would at best yield an indeterminate result. In a typed language a
programmer is also prevented from mixing values of different types in an
expression, so that

25 + 'B'
would not be an allowable expression.

Typing produces problems for object-oriented languages. In typed
object-oriented languages the rules for assignment have to be slightly relaxed to
take account of inheritance. In such languages we have to differentiate between
the static type of an entity, which is the type that it is associated with at
compile time, and the dynamic type, which is the type of the object to which it
is attached at run-time. This topic is covered in more detail in chapter 9.

In the case of the Eiffel basic types, however, the rule that an expression
of type t can be assigned only to a target of type t must be adhered to, with one
exception, which is discussed in the next section.

3.2 Operations on numeric types

The most important numeric types are REAL and INTEGER. For
variables of these types the following operators are available:

REAL and INTEGER INTEGER only
+ plus // integer division

 - minus \\ remainder after integer division

Eiffel Basic Types 33

 * multiply
/ divide
^ raise to power

// and \\ may be used only with integer operands. For example 14 // 5 and 14
\\ 5 are valid, and would yield the results 2 and 4 respectively, whereas 14.5 //
2 and 14 // 2.5 would not be allowed since in each case one of the operands is a
real number. The / sign may however, be used with integers, but would yield a
result of type REAL. So that 15 / 2 would yield 7.5 whereas 15 // 2 would
yield 7. It would of course not be allowable to assign an expression which used
the / sign to an integer variable, even if the operands were each of type
INTEGER:

an_int := an_int / 2
Eiffel does however allow us to assign an INTEGER expression to a variable of
type REAL, since every integer is part of the set of REAL numbers.

When more than one operator is used in an expression then the order in
which each is evaluated depends on the rules of precedence, for example 5+3 //
2 yields 6, not 4, as a casual reading might suggest. But the result of 4 could
be obtained by the use of brackets to override the operator precedence: (5+3)//2
Precedence is as follows:

High precedence
 ()
 ^

* / // \\
+ -

Low precedence

These operations can now be illustrated in an example. A new feature,
the routine, do_simple_arithmetic, is to be inserted in class SIMPLE as shown
in example 3.1.

class SIMPLE
-- This class has been amended to demonstrate
-- the use of arithmetic operators

creation
 test

feature
 first,second:INTEGER;
 do_simple_arithmetic is

-- new routine; body still to be added
 do

 end -- do simple arithmetic

 Eiffel Object-Oriented Programming34

 test is
 do

.............
 do_simple_arithmetic;
 end -- test

end -- SIMPLE

Example 3.1 Adding a new routine to SIMPLE

Note the single instruction added to the creation routine, test, which consists of
a call to do_simple_arithmetic. This is a case of self-reference: the target of the
call is also the sender. The target could have been made explicit:

Current.do_simple_arithmetic
The full code for the new routine is shown in example 3.2.

do_simple_arithmetic is
 do
 io.put_real(first + second / 12.5);
 io.put_real((first+second) / 12.5);
 io.put_integer(first+second^3);
 io.put_integer((first+second)^3);
 io.put_real(first / second);
 io.put_integer(first // second);

io.putint(first \\ second);
 io.put_integer(first+second // first -5);
 io.put_integer(first+second // (first -5));
 first := first^3 +2 * second;
 io.put_integer(first);
 end -- do simple arithmetic

Example 3.2 Body of new arithmetic routine

The user may compile and execute class SIMPLE. If the values 10 and 30 are
entered then the the sequence of values output should be as follows:

 12.4 3.2 27010 64000 0.3333
0 10 8 16 1060

The following points should be noted from example 3.2:

1. The use of put_real instead of io.put_integer when a REAL result is
produced;

Eiffel Basic Types 35

2. The use of brackets to change the operator precedence;
3. The assignment instruction:

first := first^3 +2 * second;
The concept of assignment was introduced in the previous chapter. This
example illustrates an important feature of assignment: a variable may be both
the target of an assignment instruction, and also appear (more than once if
required) on the right hand side of the assignment instruction. In such cases the
target's value is altered; so that if first started with the value 2, and second with
the value 3, after the instruction had executed, first would contain the value 14.
The value of second would of course be unaltered.

3.3 BOOLEAN expressions

Variables of type BOOLEAN may have one of two values, true and
false. Boolean expressions may be formed from the relational operators defined
in class COMPARABLE

< > <= >=
 and from the equality/inequality operators
 = /=
both of which are members of the set of special symbols defined for Eiffel.

Issues of equality are potentially complex in object-oriented languages,
and this issue is discussed more fully in chapter 6. At this stage it is sufficient
to regard Eiffel as providing a single set of relational operators for comparing
numbers and characters:

< > <= >= = /=
The following are examples of boolean expressions using each of the operators:

17 > 18 -- false 17 < 18 -- true
17 /= 18 -- true 17 = 18 -- false

 17 <= 18 -- true 17 >= 18 -- false
 18 >= 17 -- true 17 >= 17 -- true

BOOLEAN expressions are used to form conditions for control
instructions (chapter 4). They are also be used in assignment statements, and
as arguments in procedure calls. Example 3.3 amends class SIMPLE by adding
a new routine, do_comparisons, which is called from test, and also a new
variable of type BOOLEAN, is_true.

class SIMPLE;
-- this class illustrates the use of boolean expressions
creation

 test
feature

first,second:INTEGER;
 is_true: BOOLEAN;

 Eiffel Object-Oriented Programming36

 do_comparisons is
 do

 end -- do comparisons
 do_simple_arithmetic is
 do

 end -- do simple arithmetic
 test is
 do

..........
 -- do_simple_arithmetic - will not execute

 do_comparisons;
 end -- test

end -- SIMPLE

Example 3.3 Addition of a third routine to SIMPLE

The reader should note that the routine, do_simple_arithmetic, may be left in
class SIMPLE, and the call from test may either be removed, or commented out
so that the compiler ignores it.

Example 3.4 illustrate the use of boolean expressions in an assignment
and as arguments to an output procedure.

 do_comparisons is
 do

is_true := first > second;
 io.put_boolean(is_true);
 io.put_booean(first < second);
 end -- do comparisons

Example 3.4 Boolean assignment and output

Class SIMPLE may now be recompiled and executed. If at run time the values
17 and 18 are entered then the output should be
 false true
We may add to our routine by inputting a boolean value, as shown in example
3.5. The reader is recommended to amend the routine do_comparisons as
shown, and then to compile and execute it.

 do_comparisons is

Eiffel Basic Types 37

 do

io.read_boolean;
 is_true := io.lastbool;
 io.put_boolean(is_true);
 end -- do comparisons

Example 3.5 Boolean input from keyboard

Finally, more complex expressions need to be considered. These may be
constructed using the logical operators defined in class BOOLEAN. We may
show the logic of the binary operators, and, or and xor in the truth tables in
figure 1.

t t

t f

f t

f f

a b a b

f

f

and

f

t

AND

a b

t t

t f

f t

f f

a b

t

f

OR

t

t

t t

t f

f t

f f

a b a XOR b

f

t

t

f

OR Exclusive OR

figure 1

The operand not is a unary operator which has the highest precedence of the
boolean operators. If b is a boolean expression, then not b is true if and only if
b is false. The precedence of the operators is as follows:

high precedence not
and and then

 Eiffel Object-Oriented Programming38

 or xor or else
low precedence implies

The use of each can be illustrated as follows:

EXPRESSION RESULT

 not (17 > 20) true
17 < 20 and 17 > 16 true
17 > 20 and 17 > 16 false
17 > 20 or 17 > 16 true
17 < 20 or 17 > 16 true
17 < 20 xor 17 > 16 false
not (17 < 20 and 17 > 16) false
not (17 < 20 and 17 > 16) or 10 > 5 true

 not (17 < 20) and 17 > 16 or 10 > 5 true
not (17 < 20 and 17 > 16 or 10 > 5) false
17 < 20 xor 17 > 16 or 15 > 6 true
17 < 20 xor (17 > 16 or 15 > 6) false
17 < 20 xor (17 > 16 xor 15 > 6) true

The reader may now add the routine given in example 3.5 to class SIMPLE.

 do_complex_bool is
 do

is_true:= not (first > second) and first >25 and second < 30;
 io.putbool(is_true);

is_true := not (first > second or first >25) and second < 30;
 io.put_boolean(is_true);
 end -- do complex_bool

Example 3.5 Use of logical operators

The reader should be able to work out some values for 1 and 2 which will
generate true for one or other expression. It is not possible, however, to make
the above routine yield the output

true true
The reader is encouraged to execute it and try to prove the author wrong!

The following section may be omitted on a first reading.

Eiffel Basic Types 39

3.3 Semi-strict boolean operators

There are additional boolean operators, known as semi-strict operators :
and then or else implies

The logic and precedence of and then and or else is the same as and and
or respectively. The difference is that given the following expressions
 a and then b

a or else b
 if a is false in the first case then b is not evaluated, since at that point it is
known that the whole expression must be false. Similarly, if a is true in the
second case then there is no need to evaluate b, since the whole expression must
be true.

These operators can be useful in conditions when the programmer may
not wish to require the second operand to be evaluated because of the chance of
a run-time error. For example a terminating condition on a search of a file
might be
 end of file or key field matches search string
In this case, when the first operand is true, at the end of file, there is no record
to compare with the search string, and it is wise to avoid trying to evaluate the
second operand. The use of the or else would allow us to ensure that the second
expression was only evaluated when end of file was false.

The operator implies has the lowest precedence of the boolean operators.
The expression a implies b is the same as not a or else b. The expression is
true, therefore, if a is false, otherwise the result is given by an evaluation of b.
So, for example, the file search terminator previously discussed, could be
rewritten as
 not end of file implies key field matches search string
so that if the end of file is reached, the expression is true, otherwise the
expression is true if key field matches the search string. The truth table for
implies is given in figure 2.

a b
a

implies
b

t t

t f

f t

f f

f

t

t

t

figure 2

 Eiffel Object-Oriented Programming40

The implies operator may be further illustrated by considering the
statement:

The sun is shining implies it is daytime
which returns the values true or false as shown below:

The sun is not shining and it is daytime true
The sun is not shining and it is nighttime true
The sun is shining and it is daytime true
The sun is shining and it is night time false

The reader might wish to consider other expressions - e.g.
I have a wife implies I am a male

 Day of the month greater than 29 implies month is not February

3.5 Type CHARACTER

In Eiffel, character constants are written using single quotation marks:
 'a' 'A' '@' '8' '0' 'o' 'O' '&'
Characters are ordered, so that each of the following expressions should yield
true for any implementation
 'a' < 'z'
 'A' < 'Z'
 '0' < '9'
We may declare variables of type CHARACTER, make assignments to them,
read them from the keyboard and output them to the screen. There are few
other operations that we would wish to perform on characters.

Each character has an associated integer code which is used as the basis
for comparison. This can be obtained by using the routine, code, defined in
class CHARACTER. The routine shown in example 3.6 may be added to class
SIMPLE to enable us to find the integer code of any character in the character
set for our implementation.

 find_character_code is
 do

io.read_character;
io.put_integer(io.last_character.code)

 end -- find character code

Example 3.6 Output of integer character-code

The argument of the last instruction in the routine is worth close examination.
It is in fact a chain of calls which is evaluated from left to right:

io.last_character - returns contents of last_character: a CHARACTER
lastchar.code - calls code - target is lastchar

Eiffel Basic Types 41

The last call returns an INTEGER, which is the type required as an argument
to put_integer. The routine may again be called from the creation routine test.
This can be done by commenting out previous calls. The input-output for the
variables first and second, which are no longer required, may also be
commented out, so that the routine test consists of the single call instruction:

find_character_code;

Exercises

1. Evaluate the following integer expressions:
15 // 3 * 5 + 3 * 2^2
15+2^3*4 // 3

 15+2^(3*4) // 3
63+15\\4*2

2. Evaluate the following boolean expressions:
17 > 14 and 15 > 20 or 9 > 0
17 >= 14 and (15 > 20 or 9 > 0)
(17>= 14 and 15 > 20) or 9 > 0
15 < 6 or 7 < 10 and 17> 20 or 5 < 3 or 1 < 2
15 < 6 or 7 < 10 and (17> 20 or 5 < 3 or 1 < 2)

3. The amount an employee receives each month, net_salary, is to be calculated
as gross_salary - deductions; taxable_salary is calculated as gross_salary -
personal_allowance (4,000); deductions consist of the following:

tax - calculated : 25% of taxable salary
 pension_contributions - calculated: 6% of gross salary
Amend class SIMPLE so that it allows a user to enter the salary at the
keyboard, does the appropriate calculations and displays on the screen the
correct values for each of the following:

gross_salary taxable_salary tax
 pension_contributions deductions net_salary

4. Consider the following problem. A student passes a unit if the following is
attained:

coursework mark >= the minimum allowed for coursework
examination mark >= the minimum allowed for examinations
the total unit mark >= the minimum allowed

The total unit mark is calculated by adding the percentage mark for coursework
and exams, and dividing by 2.
Write an Eiffel routine which inputs the following values for coursework and
for the examination: actual_mark, maximum, minimum_allowed(%), and
which inputs the over-all unit pass_mark (%).
Write a single boolean expression to calculate whether a student has passed or
failed; store the result in a boolean attribute, has_passed; output the boolean
variable (true indicates that a student has passed).

42

4. Eiffel Control Instructions

Previous chapters have introduced three types of instruction:
the creation instruction used for dynamic allocation of memory to
an object;
the assignment instruction used to attach the result of an
expression to a variable;
the call, used to invoke a feature defined in a class.

This chapter introduces the control instructions used to effect sequence,
selection and iteration. It begins with a short introduction to structured
programming for those for whom this is a new concept. Those who have
studied a modern imperative programming language such as Pascal or C may
well wish to skip the first section. Subsequent sections provide a quick
reference, with short illustrative examples, to the facilities provided in Eiffel for
the construction of conditions and loops.

4.1 Structured programming

Most current object-oriented developers began by using structured methods and
imperative languages. Some would argue that object-oriented development is a
new paradigm, and that it is not necessary, and may be harmful, to have any
prior knowledge of structured methods which developed within the imperative
paradigm. There is probably no right or wrong answer to this: people learn in
different ways, and it may well be possible for novice object-oriented developers
to remain ignorant about the struggles of their imperative predecessors, whilst
others may derive great benefit from an understanding of structured
programming.
 All the languages of the Algol family, of which Eiffel is a member,
provide mechanisms for structuring algorithms using sequence, selection and
iteration. It is well established that no other construct is necessary to solve any
problem that is computable.

The concept of sequence or compound statement may be illustrated in
the following informal description of an algorithm for reading two integers
from the keyboard and dividing the first integer by the second.
 1. print a prompt on screen
 2. get an integer from the keyboard
 3. print a prompt on the screen
 4. get an integer from the keyboard
 5. display result of first integer divided by the second integer
The above consists of a sequence of five instructions written in English and
readily encodable in any high level programming language. The instructions
are intended to be executed in the order given. No variation from the order is
allowable.

Eiffel Control Instructions 43

The alert reader might note that the algorithm cannot be guaranteed to
work with every integer. If the user entered 0 when requested to enter the
second integer, it would not be possible to provide a result, since we cannot
divide by 0. To take account of this we need to introduce the second of our
control instructions, selection. We could therefore rewrite the 5th instruction so
that it becomes a conditional instruction :
 5. if the divisor = 0

then display error message
 else display result of first integer divided by second
 end -- if
The if ..then ... else provides alternative paths through the algorithm
depending on the result of the condition.

The revised algorithm could now be coded, and we could be confident
that we should not meet the problem of dividing by zero. The full solution
would now be the following:
 1. print a prompt on screen
 2. get an integer from the keyboard
 3. print a prompt on the screen
 4. get an integer from the keyboard
 5. if the divisor = 0

then display error message
 else display result of first integer divided by second
 end -- if
This would simply terminate with an error message if the user entered 0 as the
divisor.

An even better solution might be to force a user to enter an integer other
than 0 as the divisor. To do this we would use the third of our structures:
iteration or repetition, implemented in Eiffel as the loop instruction. The
sequence of statements would now be amended as follows:

1. print a prompt on screen
 2. get an integer from the keyboard
 3. loop until divisor <> 0
 1. print a prompt on the screen
 2. get an integer from the keyboard
 3. if the divisor = 0 then display error message

 end -- if
 end -- loop

4. display result of first integer divided by second integer
Using the loop, we can now guarantee that instruction 4 will not be executed
until an integer other than 0 has been entered.

The above algorithm provides an example of another feature of
structured languages, which is the ability to nest control constructs within each
other.Thus the loop in the above case contains a sequence of 3 instructions, the
third of which is another control instruction. There is no limit on nesting of
control instructions, but in the interests of reducing complexity and making

 Eiffel Object-Oriented Programming 44

software easy to understand and maintain, both imperative and object-oriented
programmers need to exercise restraint, and to use the facility only in those
cases, such as processing of multi-dimensional data structures, when it provides
the most natural solution.

Finally, it should be noted that in this case the selection has no else. If
the condition is not true the statement is not executed. No alternative needs to
be provided. The fourth instruction could have been included as an alternative
within the loop, but it is unnecessary: exit from the loop will not take place
until a non-zero integer has been entered, so that by the time statement 4 is
reached the divisor will not be 0. Each version of the algorithm will now be
written in Eiffel as a way of introducing the structures provided. The first to
be shown is the sequence.

4.2 Compound instruction

In Eiffel a sequence is known as a compound control structure. To illustrate
this, a new routine, do_sequence, is, in example 4.1, added to class SIMPLE .

do_sequence is
local

integer_1, integer_2 : INTEGER;
do

io.put_string("enter an integer > ");
 io.read_integer;
 integer_1 := io.last_integer;

io.put_string("enter divisor > ");
io.read_integer;

 integer_2 := io.last_integer;
io.put_integer(integer_1 // integer_2)

end -- do_sequence

Example 4.1 Sequence of instructions

It will be noted that there is now a sequence of seven instructions. The
additional instructions

integer_1 := io.last_integer;
integer_2 := io.last_integer;

are required by Eiffel to assin the integer from the variable io.last_integer to
the local variable locations defined for the purpose. The use of local data items
is explained in chapter 5.

The syntax of a compound can be defined using the meta language
introduced in chapter 2, as

instruction {";" instruction }

Eiffel Control Instructions 45

It may be recalled that { } indicates an iteration, Symbols enclosed in " " are
special symbols which appear in the class text. The above definition indicates
that a compound instruction in Eiffel consists of at least one instruction,
followed by an iteration (0 or more) of instructions. The semi-colon is used to
separate instructions. An alternative representation is given in figure 1. The ";"
is in fact optional, but it is good practice to use it as a separator, and this
practice is followed throughout the text.

Instruction

";"

figure 1

 4.3 Selection

Eiffel provides standard facilities for selection. It provides an if then ... else
instruction and also provides for multi-way selection using the inspect (see
section 4.5) Example 4.2 amends the previous example to include the if ... else
instruction.

do_selection is
local

integer_1, integer_2 : INTEGER;
do

io.put_string("enter an integer > ");
 io.read_integer;
 integer_1 := io.last_integer;

io.put_string("enter divisor > ");
io.read_integer;

 integer_2 := io.last_integer;
if integer_2 /= 0

 then io.put_integer(integer_1 // integer_2)
 else io.put_string("cannot divide by zero")
 end -- if

end -- do_selection

Example 4.2 If .. else instruction

The routine's change of name should be noted.
Wherever there is a single instruction there could be more than one.

The else marks the end of the sequence of instructions to be executed when the

 Eiffel Object-Oriented Programming 46

condition is true, and the end is required to terminate the sequence of
instructions to be executed when the condition is false.

The syntax of the if may be defined more formally as follows
 if condition
 then compound
 {elseif condition then compound }
 [else compound]
 end;
 The else-if part, {elseif condition then compound }, indicates that there may
be 0 or more occurrences of an elseif as shown below. The [else compound]
indicates that the item enclosed is optional. Given the above syntax definition,
each of the following would be legal constructs:

if condition-1
then compound-1

end -- if

if condition-1
then compound-1

elseif condition-2
then compound-2

 elseif condition-3
then compound-3

 end -- if

if condition-1
then compound-1

elseif condition-2
then compound-2

 elseif condition-3
then compound-3

 else compound-4
end -- if

if condition-1
then compound-1

else compound-2
end -- if

A syntax diagram for the if .. else, is shown in figure 2.

Eiffel Control Instructions 47

if Boolean Expression then

elseif

Compound else Compound end

figure 2

As already indicated, control instructions may be nested. A compoound could
itself be an if instruction, so that we are able to nest if instructions. An if
instruction of the following form would therefore be legal, but perhaps not
desirable:

if condition-1
 then if condition-2
 then if condition-3

then compound
 -- executes if conditions

 -- 1,2 ,3 are true
 else compound -- executes if 1,2 are true

-- and condition 3 is false
 end; -- inner if
 else compound -- executes if 1 is true and 2

-- is false
 end -- middle if
 else compound -- executes if condition 1 is false
 end; -- outer if

 4.4 Iteration

Eiffel is designed to be a small language, so that whereas other languages
typically provide three or four different ways of structuring repeated statements,
Eiffel provides a single multi-purpose loop instruction. This is illustrated in
example 4.3, which by returns to the algorithm introduced in section 4.1.

do_iteration is
local

integer_1, integer_2 : INTEGER;
do

io.put_string("enter an integer > ");
 io.read_integer;
 integer_1 := io.last_integer;

from
integer_2 := 0;

until
integer_2 /= 0

 Eiffel Object-Oriented Programming 48

loop
io.put_string("enter divisor > ");
io.read_integer;

 integer_2 := io.last_integer;
if integer_2 /= 0

 then io.put_integer(integer_1 // integer_2)
 else io.put_string("cannot divide by 0%N")
 end -- if

end -- loop
end -- do_iteration

Example 4.3 Use of Eiffel loop

The from-part of the loop is used to set initial values; it may consist of more
than one instruction. It may also be left empty e.g.

from
 until integer_2 = 0
and indeed, in example 4.3 it is not strictly necessary to initialise the variable
integer_2, since it will automatically be set to its default value, which is 0. It
makes good sense, however, to give variables explicit initial values, particularly
when they are being used to control loops.

It should be noted that if the from-part had read
 from integer_2 := 1
then the loop would not have executed: the loop makes the test before entry, not
afterwards, so that it in such situations it never enters the loop body.

It would be possible to produce a slightly more elegant solution using
the read ahead technique. This would remove the if instruction. The reader
should carefully compare example 4.4 with the previous example.

do_iteration is
local

integer_1, integer_2 : INTEGER;
do

io.put_string("enter an integer > ");
 io.read_integer;
 integer_1 := io.last_integer;

from
io.put_string("enter divisor > ");
io.read_integer;
integer_2 := io.last_integer;

until
integer_2 /= 0

Eiffel Control Instructions 49

loop
io.put_string("cannot divide by 0 : enter again

>");
io.read_integer;
integer_2 := io.last_integer;

 end -- loop
io.put_integer(integer_1 // integer_2)

end -- do_iteration

Example 4.4 Use of Eiffel loop with read-ahead

Particular care has to be taken to ensure that the loop does not exit
before the task has been completed. This is illustrated by a short piece of code
in example 4.5, which is designed to print out each number in the range 1 to 12
multiplied by 12 .

do_multiply is
 local
 multiplier, multiplied : INTEGER;
 do

 from multiplier := 1;
 multiplied := 12
 until multiplier = 12;
 io.put_integer(multiplier);
 io.put_string(" * ");
 io.put_integer(multiplied);
 io.put_string(" = ");
 io.put_integer(multiplier * multiplied);
 io.new_line;
 multiplier = multiplier + 1
 end -- loop
 end -- do_multiply

Example 4.5 Loop which iterates 11 times only

The output from this would in fact be
 1 * 12 = 12

..........
10 * 12 = 120
11 * 12 = 132

because on the 11th iteration the value of multiplier would initially be 11, and
would therefore output 132. Multiplier would then be incremented, and would

 Eiffel Object-Oriented Programming 50

become 12, which is the exit condition, without having produced the final
output required. For a correct solution the reader should use either of the
alternatives given in example 4.6.

 a)
from

multiplier := 0
 until

multiplier = 12
loop

 multiplier := multiplier +1;
..........................
..........................

end -- loop

b)
 from

 multiplier := 1
until

multiplier > 12
 loop

..........................

..........................
 multiplier := multiplier +1

end -- loop

Example 4.6 Loops which execute 12 times

The syntax of the loop instruction may be defined as follows:
 from

Compound
[invariant

Assertion]
[variant

Integer_expression]
until

Boolean_expression
loop

Compound
end

The [] indicates that the invariant and variant parts are optional. They are in
fact an important part of design by contract, and are more fully covered in
chapter 8. The equivallent diagram is shown in figure 3.

Eiffel Control Instructions 51

Boolean ExpressionCompoundfrom until

endloop Compound

InvariantVariant

figure 3

4.5 Multi-way selection

All modern structured languages provide a construct to express multi-way
selection. In practice, this construct is not used a great deal in object-oriented
programming, but there are occasions when it is useful.

We may take the case when we are required to take a set of actions
dependent on the run-time evaluation of an integer expression x + y. This could
have an infinite number of values at run-time, depending on the contents of x
and y. If x = 2 and y = 3 then the result would be 5, if x = 6 and y = 7 then
the result of evaluating the expression would be 13, and so on.

The inspect structure provides a relatively simple construct which allows
each possible value to be catered for, as example 4.7 shows.

inspect x + y
 when 0 then compound

when 25, 67,87 then compound
-- executes when x + y = 25 or 67 or 87

when 1..10 then compound
-- executes when x + y in range 1 to 10

when 11..20, 31..40 then compound
-- executes when in range 11 to 20 or 31 to 40

when 90..100 then compound
 -- executes when in range 90 to 100

else compound
- executes when no previous conditions true

 end -- inspect

Example 4.7 Outline of inspect instruction

 Eiffel Object-Oriented Programming 52

It would of course be possible to produce the same logic using the if ..elseif ..
else construct, but it would require the repetition of the full condition:

if x + y = 0
then

elseif (x + y = 25) or (x + y =67) or (x + y = 87)
then

elseif
and so on.

A good example of the use of multi-way selection would be a menu. If
for example a menu required a user to press a key to indicate the selection
required, we could code this as shown in example 4.8.

menu is
do

 io.readchar
 inspect io.lastchar
 when 'A', 'A' then io.put_string("amend selected")
 when 'd', 'd' then io.put_string("delete selected")
 when 'r', 'R' then io.put_string("retrieve selected")
 when 's', 'S' then io.put_string("save selected")
 when 'q', 'Q' then io.put_string("quit selected")
 else io.put_string(" invalid selection")
 end -- inspect
 end -- menu

Example 4.8 Inspect instruction

In a real application the compound instruction following each then would of
course perform the function requested rather than display a string on the screen
- but implementing the selection in this way by putting in stubs rather than
actual code is a useful technique which allows the menu logic to be tested
before the functions are coded. At a later stage the stubs may be replaced by
code which performs the functions required.

The syntax of the inspect statement may be defined as follows:
inspect expression

{ when Choice { "," Choice} then Compound}
 [else Compound]

end
A Choice may be either a constant value of any type, e.g. "X", 15, 2.3 or an
interval e.g. 5..10. The equivalent syntax diagram for the inspect instruction is
given below. The equivalent syntax diagram is given in figure 4.

Eiffel Control Instructions 53

wheninspect

compoundelse end

Choice

" ",

compoundexpression then

figure 4

Exercises

1. Write a routine, for insertion in class SIMPLE, which asks a user to indicate
how many real numbers are to be entered; the routine then allows the user to
enter each number; at the end it displays the mean and the sum of the numbers
entered. (Hint: use a loop, make sure that it can handle an input of 0 numbers).

2.Write a routine, using inspect, which allows a user to enter an integer, and
prints out the month of the year, e.g. if 1 is entered then January is output. If
an invalid month is entered, then an error message should be displayed.

3. Starting with the code given in example 3.6, write a routine which prints out
all the printable characters in the character code. (Hint: usual range is 0 to
255).

4. Amend the first exercise so that the maximum and minimum are also output
at the end. (Hint: read first number outside loop, and set max and min to this
number before entering the loop; make sure that it can still handle 0 numbers).

54

5. Eiffel Routines

The routines introduced in the preceding chapters have been introduced mainly
to illustrate features of the Eiffel language. The role of a routine in object-
oriented programming ought now to be clarified:

in the context of object-oriented development the routine is a
secondary concern, whereas in the context of process-oriented
development it has a major role in decomposing a problem
into manageable small tasks;

in object-oriented software development, data is given a more
privileged position, whereas functions and sub-functions are
the primary organising idea in traditional software
development;

the primary focus in object-oriented software development is
on the classes of objects in the system being modelled;

classes provide a combination of state and behaviour, and
externally may be viewed as collections of data and services;

in the context of Eiffel, routines are features of a class which
if public, are used to provide the services required by clients,
or if private are used to perform auxiliary tasks necessary to
satisfy the requests of clients;

in pure object-oriented languages such as Smalltalk and
Eiffel, routines, or 'methods' as they are known in Smalltalk,
are associated with a particular class, and can be invoked only
when sending a message to an instance of that class.

 This chapter introduces the syntax of routines in the Eiffel language,
distinguishes between routines which do and do not return a result, covers
local variables and arguments, creation routines and once routines. It also
introduces ideas of recursion.

Those with experience of other high-level languages may well be able to
skip much of what follows.

5.1 Routines which do not return a result

In many languages routines which do not return a result are known as
procedures. We may define a procedure as a sequence of instructions,
referenced by name, and designed to perform some action as part of a larger
program. Additionally procedures have the following characteristics:

Eiffel Routines 55

55

have no state but may hold data temporarily;

may have inputs, variously known as arguments or
parameters;

in object-oriented programming they often cause a change
in the state of the object for which they are invoked

 In Eiffel, the syntax of a routine which does not return a result may be given as
follows:
 <routine_name> [formal argument list] is

[preconditions]
 [local declarations]
 do
 compound instruction
 [postconditions]
 end

(See figure 1 for the syntax diagram). The above indicates that a routine begins
with its name - formed according to the same rules as other user-defined
names. It optionally has arguments, and likewise may have some local
variables. The reserved word is follows the arguments and precedes the local
declarations. The preconditions and postconditions, which are optional, are
covered in chapter 8. The body of the routine, which is where the action is
encoded, is delimited by the reserved words do and end, and consists of a
compound instruction, which, as indicated previously, is a sequence of
instructions.

isroutine-name

end

argument-part

preconditions

postconditions

compound do local-data

figure 1

The argument part of a routine may be defined as
"(" entity declaration list ")"

and an entity declaration list may be defined as
 <identifier > {"," < identifier >} ": " type

{ <identifier { "," <identifier> } :" type }

 Eiffel Object Oriented Programming56

or diagramatically as shown in figure 2.

","

")""(" identifier ":" type

";"

figure 2

The use of arguments allows the action performed by a routine to be
varied according to a value or values passed in at run-time. Good examples of
this may be found in the Eiffel libraries. For example STD_FILES includes the
following routines, with formal arguments of types BOOLEAN, CHARACTER
and INTEGER:
 pu_boolean (b:BOOLEAN);
 put_character (c:CHARACTER);
 put_integer (i:INTEGER);
The formal argument of put_integer is therefore
 i:INTEGER
and whenever put_integer is called the caller must supply a single integer
expression as an actual arguument. This means that if at run-time it is called
with an argument of 7 +16, the value 23 would be output; likewise, if called
with an argument of 95//2, the value 47 would be displayed on the screen.

The type of a formal argument will usually be a type identifier such as
STRING, INTEGER, CUSTOMER, but alternatives are sometimes used, as a
look at the class libraries soon reveals:

copy(other like Current) -- in class GENERAL
copy(other: ARRAY[G]) -- in class ARRAY

The first is an anchored declaration, which in this case indicates the the actual
argument must be the same type as the target object. The second is a formal
generic parameter (see chapter 10)

In a typed language, such as Eiffel, the compiler will check to ensure
that the actual arguments are the same type as the formal arguments declared in
the routine, so that for a routine with the following heading:
 make(c:CHARACTER,i:INTEGER);
it would check that the actual arguments consist of a character and an integer
in the same order as the declaration. The following would therefore be valid
calls:
 make('B', 17);
 make(io.last_character, io.last_integer*10);
In the first case the arguments are explicit values of the correct types, in the
second case they are expressions which yield the correct types - but whose value
cannot be known until run-time.

Eiffel Routines 57

57

If a programmer tried to call make with the following actual arguments,
then compilation errors would result:
 (17,'B');
 -- arguments in wrong order
 -- so types would not match those
 -- of formal arguments
 ('B');
 -- not enough arguments
 (io.last_integer,io.last_character)
 -- arguments in wrong order
 (io.last_real)
 -- insufficient arguments
 -- also wrong type

Unlike languages such as Pascal and Ada, Eiffel does not allow values to
be passed back to a caller from a routine using variable parameters or call by
reference. Arguments are read only, so it is not possible to use an argument as
the target of an assignment instruction, and an attempt to do so would yield a
compilation error. It is allowable, however, to alter the state of the argument by
making it the target of a call.

We may give a simple example of two routines with arguments defined
as features in class BANK_ACCOUNT, shown in example 5.1. This class has
four attributes: id_no, balance, credit_limit, name, and two routines which
may be used to change the value of balance and id_no.

Both the routines in example 5.1 illustrate a common occurrence in
object-oriented programming: using a routine to alter the contents of an
attribute - this type of routine is often described as a transformer, in that it
transforms the state of the target object. Attributes are read only for clients, so
it is not possible to alter an attribute externally unless a suitable transfomer has
been defined.

The first routine, debit_amount, has a single formal argument,
amount:REAL, which is used to pass in the amount to be debited from the
account. It also has a body, consisting of a single line which subtracts amount
from balance. The second routine has two arguments: it compares the first
argument with the attribute id_no, and if they match, then it changes id_no; if
not, then it writes an error message.

class BANK_ACCOUNT
feature

id_no: INTEGER;
balance: REAL;
credit_limit: REAL;

 name: STRING;

debit_amount(amount:REAL) is
do

 Eiffel Object Oriented Programming58

 balance := balance - amount;

end -- debit_amount;
change_id(old_no, new_no:INTEGER) is
do

 if old_no = id_no
then id_no := new_no

 else io.put_string("invalid current id")
 end -- if

end -- change_id
end -- BANK_ACCOUNT

5.1 Transformer routines with arguments

As previously indicated, the compiler will check that the actual
arguments match the formal arguments: in the first case the caller must pass in
a single actual argument of type REAL; in the second case the caller must pass
in two arguments, both of type integer.

Example 5.2 shows class CONTROLLER, which is a client of class
BANK_ACCOUNT through its declaration of the attribute account. The
example shows some legal calls to each of the routines defined in class
BANK_ACCOUNT.

class CONTROLLER
creation

test
feature

debit:REAL;
id :INTEGER;
account:BANK_ACCOUNT;

test is
--shows some legal calls to an instance
-- of class BANK_ACCOUNT

do

 account.change_id(id,1002);
 account.debit_amount(20.50);
 account.debit_amount(debit);

end -- test
end -- CONTROLLER

5.2 Examples of calls to routines with arguments

Eiffel Routines 59

59

It should be noted that the target of each call is account, which is an instance of
class BANK_ACCOUNT. The type and number of the actual arguments
matches the formal argument list specified in the corresponding routine
declarations in class BANK_ACCOUNT. The result of the first call would be to
change the id_no of account to 1002 - assuming that the value of id matched
account's id_no.The second and third call would debit 20.5 from account's
attribute, amount_owing, and would then deduct whatever value was held in the
attribute, debit.

5.2 Local data

In common with Pascal and other block-structured languages, Eiffel
allows programmers to declare data which is local to a routine. A local data
item has the following characteristics:

it is visible only within the routine in which it is declared;

it is purely temporary in duration: it is stored only whilst the
routine is executing.

With regard to the last point it should be remembered that a routine may have
inputs but, unlike an instance of a class, it does not have a state. Local data is
not allocated a permanent place in memory, but is held on a stack, and is
recreated each time that a procedure is called. The contents of a local variable
are therefore lost on exit from the procedure.

Local data should therefore be used only for storing information whose
contents are not considered part of the state of the current object. Good
examples would be a variable used to control a loop, or a variable required to
store an item temporarily during a calculation. Such data items should not be
made features of a class.

The syntax for local variables may be defined as shown in figure 3.

 "local " < local_name > { "," < local_name > } ":" type
 { ";" < local_name > { "," < local_name > } ":" type }
Or diagrammatically they may be represented as follows:

local identifier ":" type

","

";"

 Eiffel Object Oriented Programming60

figure 3

As with arguments of routines, and indeed with attributes, the type of a local
may also be an anchored declaration or a parameterised generic type.

Example 5.3 gives an illustration of the use of local data in a routine. In
this instance the local variable count is used to control the loop. If this routine
were called with the parameters ('*', 25) then it would produce the following
output:

write_char_n_times(char:CHARACTER;n:INTEGER) is
 local

 count:INTEGER
 do
 from count := 1

 until count > n
 loop

io.put_character(char);
 count := count + 1
 end -- loop

end -- write_char_n_times

5.3 A routine which uses a local variable

5.3 Routines which return a result

It is often useful to make a distinction between a procedure and a function. The
terminology used by various modern languages can be confusing. C and C++
allow us only to write functions. Pascal allows us to write functions and
procedures. Modula-2 allows us to write procedures and procedure-functions.
Smalltalk uses the term 'method'.

A function may be defined as a procedure which returns a result. That
should be its sole purpose. In the context of object-oriented programming, a
function is an accessor, a routine which allows a client to query the state of an
object. It should not, therefore, be used to perform actions which alter the
contents of attributes. Sometimes it might seem more efficient to allow a
function to change the state of an object by a 'side-effect' - i.e. something which
is not its main purpose. Such practices can, however, be a nightmare to debug,
and this practice is strongly discouraged, even though the Eiffel language does
not prevent a programmer from doing it. The rule should always be to use a
procedure, not a function, to alter the state of an object.

Eiffel Routines 61

61

We may now look at some Eiffel routines, firstly in order to understand
the difference between a routine which returns a result (a function), and one
which does not (a procedure). For those who are unclear as to what a function
is, a good place to look is in the REAL class in SmallEiffel. Here there are a
number of mathematical functions including the following:

cos: DOUBLE;
floor:INTEGER;
ceiling:INTEGER;
abs: REAL;

None of these functions has an argument; to return the absolute value of a_real
you must send it a message: a_real.abs; in imperative style programming you
would pass a_real as a parameter: abs(a_real).

 class SIMPLE
 feature

 maths_examples is
do

io.put_real(floor(125.76))
 -- displays -126 on screen

 io.put_real(ceiling(-125.76))
 -- displays -125 on screen

io.put_real(cos(15.5))
end -- maths_examples

end -- SIMPLE

5.3 Using routines as arguments to other routines

It should be noted that since a function returns a result it may only be called
either as an argument to another routine, or in other cases when an expression
might be used. Example 5.3 illustrates the use of routines which return a result
as parameters to other routines. Example 5.4 shows their use in assignment
instructions or as parts of conditions.

 class SIMPLE
 feature

 maths_examples is
local

a_real:REAL
do

io.read_real;
 a_real := floor(io.last_real);

io.read_real;
 if floor(io.last_real) > a_real
 then

 Eiffel Object Oriented Programming62

io.put_real(io.last_real)
io.put_string(" is larger")

end -- if
end -- maths_examples

end -- SIMPLE

Example 5.4 Using routines in assignment instructions
 and conditions.

We are now in a position to consider how we construct our own routines which
return a result. We may begin with the syntax:
 <routine_name> [arguments] ":" < result_type > is
 [local variables]

{preconditions]
 do
 compound instruction

[postconditions]
 end
which, as illustrated in the shaded part of figure 4, differs only in one respect:
the routine must be declared with a result type, which immediately precedes the
reserved word is and is separated from the argument part by a
colon.

is

end

preconditions

postconditions

compound do local-data

result_typeroutine-name argument-part ":"

figure 4

credit_available: REAL is
do
 Result := credit_limit + balance;
end -- credit_available

Example 5.5 A routine which returns a REAL result

Eeample 5.5 provides an accessor routine which may be added to class
BANK_ACCOUNT. This function which has no argument, returns the result of

Eiffel Routines 63

63

a simple calculation. The use of the predefined identifier Result should be
noted: with every function declaration there is an implicit Result which has the
same type as the function. Result may be regarded as a local variable, and is
both readable and writable, as is illustrated in example 5.6. It has the same
initial default value as the routine's type. So in the above case its initial value
would be 0. If the routine's type was CHARACTER then the value would be
nul, and if it were a reference type then Result's default value would be void.

 Eiffel Object Oriented Programming64

factorial(i:INTEGER):INTEGER is
 local

 count:INTEGER
 do
 from

count := 0;
 Result := 1;

 until
count = i

loop
 count := count + 1;
 Result := Result * count;
 end -- loop

end -- factorial;

5.6 A routine which returns an INTEGER result

At the time when control is passed back the value currently held in Result is
passed back to the caller.

5.4 Creation routines

 Creation routines have been introduced in earlier chapters. As previously
indicated, a root class must have a creation routine. It is this which is first
executed when the executable file is loaded into the computer's memory. For
classes not intended to be root classes, a creation routine is optional. If one is
defined then it must be invoked in the creation instruction:

!!an_obj.a_routine(an_argument)
The main use of a creation routine is to give attributes initial values. Creation
routines may or may not have arguments.

Creation routines are written in the same way as ordinary Eiffel
routines. They are declared as creation routines in the early part of the class
prior to the declaration of any features. This is illustrated in the case of
BANK_ACCOUNT, which, is shown in example 5.7, with a creation routine,
make, which has three arguments. The purpose of this routine is to provide
initial values for the attributes id_no, credit_limit and name. This would allow
each customer that is created to be given a unique id_no, and also to have the
name and credit_limit attributes individually initialised. All customers will
certainly not have the same name, and this routine allows customers to be given
differing credit limits from the outset. The attribute balance is intended to be
the same initially for all customers, the default value, 0.

Eiffel Routines 65

65

class BANK_ACCOUNT
creation

make;
feature

id_no: INTEGER;
balance: REAL;
credit_limit: REAL;

 name: STRING;
make(cust:STRING;limit:REAL;id:INTEGER) is
do

name := cust;
 credit_limit := limit;

 id_no := id;
end -- make
............................

end -- BANK_ACCOUNT

5.7 A creation routine with arguments

Example 5.8 illustrates how an instance of BANK_ACCOUNT could be
instantiated using the creation routine make.The reader might be puzzled by the
use of the function clone in the last instruction. This is a necessary safeguard
because STRING is a reference type, and clone ensures that an independent
copy of io.last_string, rather than simply a reference to io.last_string, is passed
as an argument. Were this not done, any subsequent call to io.read_line would
change the name stored in account. It is not necessary to clone io.last_real and
io.last_integer which are values rather than references. Issues of copying and
cloning are discussed further in chapter 6.

class CONTROLLER
creation

test
feature

account:BANK_ACCOUNT;
init_account is
do

 io.put_string("enter customer number >")
io.readint;

 io.put_string("enter customer name >");
io.read_line;
io.put_string("enter credit limit >");
io.readreal;

 Eiffel Object Oriented Programming66

 !!account.make(clone(io.last_string),
 io.last_real, io.last_integer);

end -- init_account

end -- CONTROLLER

5.8 Invoking a creation routine with arguments

5.5 Recursive routines

Like most modern computer languages, Eiffel supports recursion. Recursion is
a well understood technique for solving certain types of problem, and in some
cases may be used as a more elegant alternative to loops, especially for
processing lists and trees, which are naturally recursive data structures.

A recursive routine is a routine which calls itself. When a routine is
invoked recursively a stack of activation records is kept. An activation record
consists of local variables, arguments, and a return address, which is the
instruction following the original call. This is illustrated in figure 5.

args
locals
return

Top

args
locals
return

args
locals
return

Stack of activation records

Bottom Record for 1st call

Record for 2nd call

Record for nth call

figure 5

A recursive routine consists of at least one of each of the following:
a base case which can be solved directly
a recursive call

e.g.
if base case

then solve problem
else solve smaller problem

Eiffel Routines 67

67

The reader should be able to identify the base case and the recursive call in
example 5.9, which returns a factorial.

factorial(n:INTEGER):INTEGER is
do

 if n = 0
 then Result := 1

 else Result := n * factorial(n-1)
 end;
 end -- factorial;

5.9 A recursive routine

An English description of this might be:
 the factorial of 0 is 1
 the factorial of a positive integer n is n multiplied

by the factorial of n minus 1

To take an example, the factorial of 3 may be calculated as follows:
 3 * factorial 2;
factorial 2 is calculated as
 2 * factorial 1;
factorial 1 is calculated as
 1 * factorial 0
factorial 0 is

 1.
So the result, working backwards, is 1 * 1 * 2 * 3, which is 6.

This introduction to recursion concludes with an example of a recursive
routine which does not return a result (5.10). Other examples of the use of
recursion will be found in later chapters.

print_seq(i:INTEGER; n:INTEGER) is
do

if i < = n
then

print_seq(i+1,n);
io.put_integer(i);

end -- if
end -- print_seq

5.10 A routine which prints a range of positive
integers in reverse order

 Eiffel Object Oriented Programming68

 5.6 Once routines
(Non-advanced readers are recommended to skip this section)

Once routines are routines which execute once only. On any subsequent call
they return exactly the same result. Their main use is to provide an application
with shared or global objects. An example of the use of a once routine was
introduced in chapter 2, when it was indicated that the following feature in
class GENERAL provides a shared instance of STD_FILES.

io :STD_FILES is
once

!!Result
end -- io

5.11 Once routine, providing shared copy of io

Each class inherits automatically from GENERAL, so every object in an Eiffel
application shares the same copy of io.The first time io is called it executes the
creation instruction

!!Result
which creates an instance of STD_FILES which is returned to the caller. On
each subsequent call, from whichever object the call is made, it returns the
same instance. How the Eiffel system does this is beyond the scope of this text,
suffice it to say that the memory location of all once routines must be
independent of any single object, and the system must keep some kind of record
that indicates whether the routine has previously been called. This happily is a
matter for language implementors rather than application programmers.

If a programmer wishes to provide for an instance of a class to be shared
among many objects, a once routine needs to be placed in a separate class, from
which each class that needs access to the shared object may inherit. As an
example, consider an application simulating the passage of customers through a
supermarket: the objects in the system would consist of customers, checkout-
tills and so on. Each customer object might, on leaving the store, need to update
the simulation statistics; other objects would also need to access the statistics.
To allow this a class SIM_STATS might be developed. Such a class is shown in
example 5.12. t consists of two attributes only: count, which is used to keep a
tally of the number of customers passing through the checkout, and a time
counter, secs, which is used to record the total queueing time of all the
customers.

Eiffel Routines 69

69

class SIM_STATS
feature

count:INTEGER;
secs:REAL;
inc(t:REAL) is

-- increments count and adds t to secs
do

count := count+1;
secs := secs + t

end -- inc
average_time :REAL is

-- returns average time
do

Result := secs / count;
end -- average_time

end -- SIM_STATS

5.12 Class designed to store simulation statistics

The next stage would be to create a class SIM_GLOBALS as shown below.
Class CUSTOMER, and any other class in the simulation that needed access to
the stats would simply inherit SIM_GLOBALS.

class SIM_GLOBALS
feature

stats: SIM_STATS is
once

!!Result
end -- stats

end -- SIM_GLOBALS

5.13 Once routine, providing shared copy of SIM_STATS

Examples of the use of once routines to provide global variables are given in
the second case study in chapter 14.

The use of once routines needs to be treated with caution. A shared
object is inherently less secure. Even in the case of io the programmer may find
unanticipated results: the attributes used to store the state of io will be altered
by any call to an input routine, and if any of its instance variables are referred
to after a delay, then the results may well be affected by calls made from other
objects in the intervening time.

 Eiffel Object Oriented Programming70

5.7 External Routines
(Readers are advised to skip this on a first reading)

Eiffel is a high-level programming language, but sometimes it is necessary to
access low-level, system-dependent routines, and sometimes it is beneficial to
be able to reuse existing well-tried code written in another language. To support
this, Eiffel provides external routines, which may be used to call C routines.
An external routine will have a form as follows:

any_routine(arg1: INTEGER; arg2:REAL) is

external
"C"

 alias "_c1"
end -- any_routine

5.12 An external routine

The alias is optional, and is used to provide the actual name of the C routine. C
routines may begin with an underscore as shown in example 5.12. Detailed
coverage of external routines is beyond the scope of this text, and the
programmer who wishes to use such routines will need to consult the
installation manual for more information.

This completes the coverage of routines, apart from preconditions,
postconditions and the rescue instruction which are covered in chapter 8.

Exercises

1. Rework exercise 2 in chapter 4 to provide the following routine:
month_as_string(month:INTEGER):STRING

2. If the following routines are not available in the class library
greater_than(x,y:INTEGER):INTEGER; -- returns greater of x ,y
smaller_than(x,y:INTEGER):INTEGER;
abs(x:INTEGER):INTEGER; -- converts negative x to positive

then write your own, then implement and test them.

3.Fully implement class BANK_ACCOUNT, and class CONTROLLER.
a) BANK_ACCOUNT should contain additional routines to those

already given:
 pay_in (amount:REAL)

-- adds amount to balance

Eiffel Routines 71

71

is_over_drawn:BOOLEAN
-- returns true if balance < 0

can_issue_cash(amount_requested:REAL):BOOLEAN
-- returns true if amount_requested > amount_available

print_details
-- outputs full account details to the screen

b) CONTROLLER should have a creation routine, test, and should have
an attribute of class BANK_ACCOUNT, account; the routine init_account
should be invoked by test to initialise the account; test should then perform the
following operations on account

print account details
change credit limit to 100
print account details
add 200 to account
print account details
withdraw 250 from account
query account to see if 51 can be withdrawn from it
pay in 1
query account to see if 51 can be withdrawn from it

3. Work out what the output of the routine mystery would be if the following
sequence of 10 characters was entered at the keyboard: "sdrawkcab "

 mystery is
local

x:CHARACTER;
 do
 io.put_string("enter character>");

 io.read_character;
 x := io.last_character;
 if x /= ' '

then
mystery; --**

 io.put_character(x); --**
 end -- if

end -- mystery

4. Work out the result using the same input as in question 4 if the lines of code
marked with --** were reversed so that they read:

io.put_character(x);
mystery;

72

6. Classes, Objects and Instantiation

Chapters 2 to 5 have introduced the lower level features of the Eiffel language.
The reader should now have enough grasp of the language to return to the basic
ideas of object-orientation introduced in chapter 1. This chapter explores the
relationship between classes and objects, introduces the Eiffel facilities for data
hiding, and discusses issues of memory allocation, object copying and object
comparison.

6.1 Classes and objects

Object-oriented programming may be regarded as simulation or model-
building. When software is developed in an object-oriented way, we begin by
identifying 'things' in the external world being modelled (a customer, an
account, an employee) and also parts of the computer support required to
implement the model (e.g. a file, a window, a menu). When the objects to be
modelled have been identified, we must then identify which attributes of an
object are to be modelled, and also what requests other object will make to that
object.

Object-oriented applications consist of collections of interacting objects.
Objects interact by sending messages/requests to each other and by responding
to those messages/requests. Communication between objects is by invocation of
one of the methods or services provided by an object. The response of an
object to a message will at run-time be determined both by any inputs which
accompany the message, and by the state of the object when it receives the
message.

When we talk of object-oriented programming in Eiffel and indeed in
most 'object-oriented' languages, we are more accurately talking of 'class
oriented' programming. Eiffel allows us to write only classes. There is no such
construct for object. An object is an instance of a class dynamically created
during the execution of a software system. Any object must belong to a class,
even if it is the only member of that class.

A class is, therefore, a template from which objects may be created. The
code for a class specifies the data to be held by all instances of a class and also
the functionality which will be common to all instances of that class.

Some of these concepts may be illustrated by looking at a simple object,
a person called JIM. JIM has a name, JIM, he is 31 years old, he is male, and
has an address, 31, Panjim Road, Dona Paula, Goa, India. There is of course
much more to JIM than that - height, weight, marital status and so on, but that

Classes, Objects and Instantation 73

73

is enough for the moment. Likewise in our model JIM responds to three
messages only -

 increment your age
 change your address
 display yourself

although in real life he does lots of other things, and will not respond sensibly
to any of these messages.
 Now if we were going to model JIM using Eiffel or indeed most object-
oriented languages we have no choice but to create a class, and it would be
more sensible to create a class PERSON ,with JIM stored in an attribute (name)
rather than JIM being the name of the class. In practice our application would
be unlikely to require just JIM alone, but might require hundreds, even
thousands of people like JIM.

Happily creating a class PERSON means that we do not need to write a
separate piece of code for each: we may create as many instances of the class as
we wish. The features of PERSON are shown in figure 6.1.

PERSON

Name
Age
Sex
Address

Change_Address
Display

Increment_Age

figure 6.1

It may be recalled that the attributes or data are listed in the middle sector of
the box, and the services, or messages to which an object of class person will
respond, are listed in the lower part of the box.

For each of these messages, PERSON has a method or routine which
enables it to respond in a predefined way. Routines can conveniently be divided
into three categories: constructors, transformers, accessors. The first two
routines above can be described as transformers: they change the state of the
recipient. We shall normally need one transformer for each public attribute of
an object, but in this case we have not provided one for sex or name. Person

 Eiffel Object Oriented Programming 74

cannot be instructed to change sex or to change name. We have assumed that
these are immutable. The third message can be described as an accessor. It does
not affect the state of a Person, but provides access to each of the state
variables. There is no example of a constructor in the above list (but see section
6.6).

The effect of the first message will be determined by person's state. If
we tell person "increment your age" and the current contents of the age variable
are 30, then the new state of the age variable will be 31.The effect of the
change your address message will be dependent solely on the inputs sent with
the message:

change your address to "15, Park Lane, Cheetham Hill, Manchester, U.K."

 The effect of the display routine will be dependent on the contents of each state
variable, which will simply be displayed on the screen:

Jim Perera Male 31

15 Park Lane,
Cheetham Hill,
Manchester,
U.K.

 We can now write Class PERSON in Eiffel (example 6.1). It has eight
features: four attributes and four routines. A creation routine, make, has been
added. This is used when an object is instantiated, to set the unchangeable
attributes, name and sex and to give age an initial value.

 class PERSON
creation

make
feature

age: INTEGER;
 sex: CHARACTER;
 name: STRING;
 address: STRING;

change_address(new_address:STRING) is
 do

address := new_address;
 end -- change_address

Classes, Objects and Instantation 75

75

inc_age is
 do
 age := age +1;
 end -- inc_age

display is
 do

io.put_string(name);
 if sex = 'm' or sex = 'M'

then io.put_string("Male")
elseif sex ='f' or sex = 'F'

then io.put_string("Female");
end -- if
io.put_integer(age);
io.put_new_line;

 io.put_string(address);
io.put_new_line;

 end -- display
make(p_name:STRING;m_or_f:CHARACTER;

 p_age:INTEGER) is
 do

name := p_name;
age := p_age;

 sex := m_or_f;
 end -- make
 end -- PERSON

Example 6.1 Encapsulation of person in an Eiffel class

We can now show how, in a client class, objects of class PERSON could be
declared and created.

6.2 Instantiation

The term instantation means to create an instance of a class; this is the process
by which objects are allocated memory. In Eiffel, unless we specify otherwise,
any class that we write will be a reference type. This means that instances must
be created dynamically, at run-time. Thus the declaration

p1:PERSON
simply produces a reference or pointer, with an initial default value Void.

 Eiffel Object Oriented Programming 76

Voidp1

In example 6.2, three attributes of class PERSON are declared, but until they
are created dynamically they do not exist: they have no data and they can
respond to no messages. It should be pointed out that a compiler will not detect
whether or not an object has been created. An attempt to invoke a call on an
entity which has the default value Void will therefore result in a run-time error.

class CONTROLLER
creation

test
 feature

 p1, p2, p3 : PERSON;

 test is
 do
 !!p1.make("Jim Perera",'M',31);
 !!p2.make("Anne Jones",'F',27);
 !!p3.make("Robert Bruce",'M',56);

.....
 end -- test

end -- CONTROLLER

Example 6.2 Creation instructions

Before any messages can be sent to p1 for example, it must first have memory
allocated to it. This is done by the creation instruction, which in the case of p1,
whose class has a creation routine, make, specified, is of the form

!!p1.make(...)

p1

name
age

sex

address Void

'M'

31
Jim Perera

Classes, Objects and Instantation 77

77

figure 6.2
The effect of this is to allocate memory, and to initialise all fields of the new
instance with either default values, or values set in the creation procedure, as
shown in figure 6.2.

It should be noted that address has the value Void, which is the default value of
all reference types.

6.3 Object destruction.

In C++ the programmer is responsible for managing memory, and therefore
must take care of memory deallocation as well as allocation. In Eiffel, as in
Smalltalk, no explicit deallocation of memory is required. It is perfectly
acceptable for example to make assignments such as the following:

p2:= p1;
p1 := void

without having to make any provision for deallocating the memory to which
either p2 or p1 was previously attached.

Void

p1

name
age

sex

address Void

'M'

31
Jim Perera

name
age

sex

address Void

'F'

27
Anne Jones

p2

Previous Attachment

figure 6.2

All Eiffel run-time systems include a garbage collector, which keeps a track of
memory that is no longer required, and reallocates it when necessary. So that in
the case shown in figure 6.3, the memory containing "Anne Jones", to which p2

 Eiffel Object Oriented Programming 78

was previously pointing, would be a candidate for reclamation by the garbage
collector, provided that no other attribute of any object in the system was
attached to it.

The final section of the chapter returns to the issue of pointer semantics
when it covers equality and copying.

 6.4 Data abstraction and feature visibility

The concept of data abstraction is fundamental to object oriented programming.
Classes are abstract entities which should hide implementation details from
potential users. A well written class should have a simple interface:

not too many public features;
public routines should have few arguments.

In order to provide this abstract view of a class, we need to hide information -
to be able to provide a private and a public view. In some languages it is
necessary to write a class interface and a class implementation. One of the
problems with this is that when a change is made to the interface, it must also
be made to the implementation; this can be very time consuming. Eiffel makes
no such distinction; a single text defines a class and a tool is used to produce a
short, external view of the class. This means that implementation details and
private features of a class are filtered out by the tool, and the user can view the
class abstractly. It also means that any change has to be entered once only.

The concept of visibility is similar to the concept of scope which is
commonly used in block structured languages such as Pascal to describe the
contexts in which an identifier will be recognised by a compiler. The scope or
visibility of a global variable is unrestricted. Its contents may therefore be
accessed freely within a software system. Global variables stand at the
opposite pole to information hiding, and their use has long been discouraged in
the OO community. Eiffel in fact does not allow a programmer to define
global variables, although Smalltalk does. It is possible however to use once
routines to provide shared instances of a class (see chapter 5).

Even outside the OO community it has long been recognised that
control over the scope or visibility of names helps to reduce complexity in
software systems - it reduces the dependence between software units, helping to
produce software units which exhibit that "high cohesion" and "loose coupling"
which is a feature of quality software development, and which is perhaps more
easily attainable using object-oriented methods.
 As far as feature visibility is concerned, the most important issue is the
visibility of attributes outside the class in which they are declared. All object-
oriented languages provide some mechanisms to control their visibility. In
Smalltalk instance variables (attributes) are not visible outside their class, and

Classes, Objects and Instantation 79

79

cannot therefore be read or updated from outside. In C++ there are facilities
for defining public, protected and private fields within a class, although it is
still possible to have read-write access from outside the class in which the field
has been declared.

The default in Eiffel is for all class features to be public. This
affords limited protection in that it is not possible for a client to alter the state
of any attribute by assignment. Assuming declarations in a client class of
 p1, p2, p3 : PERSON
The compiler would not allow us to write
 p1.name := p2.name;
 p1.age := 17;
because the attributes of an Eiffel class are considered read-only for clients. It
would however be possible to write the following

p1.name.copy(p2.name)
which would achieve the same purpose as p1.name := p2.name.

It is possible within Eiffel to provide protection for data by making
features private, or by limiting access to specified client classes. This facility is
achieved by specifying access in the feature clause:
 feature -- features are public
 feature {NONE} -- features are private
 feature {} -- features are private
 feature{A} -- features available to class A only
 feature {A,B} -- features available to classes A,B only

Class PERSON, shown in example 6.3 with additional features to those
previously defined, shows how the features of an Eiffel class may be restricted.

class PERSON
creation

 make
feature {EMPLOYER,BANK}

salary: REAL;
change_salary(p_salary:REAL) is
do

salary := p_salary;
end -- change_salary

feature {BANK}
 overdraft_limit:REAL;

change_overdraft(p_overdraft) is
do

 overdraft := p_overdraft;
 end -- change overdraft

 Eiffel Object Oriented Programming 80

feature {}
 net_assets : REAL;
 change_assets(p_assets:REAL) is
 do
 assets := p_assets;
 end -- change_assets

inc_age is
 do
 age := age +1;
 end -- inc_age

feature
 sex: CHARACTER;
 name: STRING;
 address: STRING;
 age:INTEGER;

change_address(new_address:STRING) is
 do

address := new_address;
 end -- change_address

make(p_name:STRING;
m_or_f :CHARACTER;
p_age:INTEGER) is

 do
 name := p_name;

age := p_age;
 sex := m_or_f;
 end -- make
end -- PERSON

Example 6.3 Restrictions on export of features

Instances of class BANK have read-only access to the attributes salary, name,
sex, address and age, may call the routines make, change_salary,
change_overdraft and change_address, and so may both read and alter the
contents of salary,address, and overdraft_limit.

For completeness it should be pointed out that it is quite common for a
class to be a client of itself, and this can cause unanticipated problems when
restrictions are placed on the visibility of a feature. A class may become a client
of itself whenever one or more of the following occurs:

it contains an attribute or local entity of its own class

Classes, Objects and Instantation 81

81

it contains a function which returns a result of its own class
it contains routine which has a formal argument of its own class

As an example we might consider the addition to class PERSON of a routine
is_older(p:PERSON):BOOLEAN

which returns true if Current is older than the argument p. In this case
PERSON is now a client of itself. Likewise we might add the routine shown in
example 6.4 which is designed to return true if Current is richer than p.

is_richer(p:PERSON):BOOLEAN is
do

Result := Current.net_assets > p.net_assets
end -- is_richer

Example 6.4 Class PERSON as client of itself

In this case the routine would not compile because of the restrictions on the
visibility of net_assets (see example 6.3). The compiler would not allow the
feature call p.net_assets, but would allow the self reference to net_assets.

6.5 Issues of assignment and equality

These issues can be quite difficult at the beginning, and the reader might chose
to come back to this section at a later stage. These are important issues
however, and unless understood will sooner rather than later lead to
unanticipated results.

As indicated earlier, Eiffel provides the standard Pascal-like equality
and assignment operators. It should be borne in mind however, that for objects
of reference types, assignment is actually pointer assignment, and equality is
pointer equivalence. The effect of a statement p1 := p2 is as shown in figure
6.4.

age

sex 'M'

31

id 95324p2

p1

figure 6.3

 Eiffel Object Oriented Programming 82

As a result of pointer assignment, p1 and p2 point to the same area of memory.
Also the equality operation p1 = p2 yields true. Now consider the case shown
below: each field contains identical information, and p1 and p2 are therefore
structurally equivalent. Since they are separate objects however (see figure 6.5),
the boolean expression, p1= p2 would yield false.

age

sex 'M'

31

id 95324

p2

p1
age

sex 'M'

31

id 95324

figure 6.4

In order to test structural equivalence as opposed to pointer equivalence,
Eiffel provides two routines in class GENERAL that allow objects to be
compared :

is_equal(other:like Current):BOOLEAN;
 equal(some:ANY;other:like some):BOOLEAN;
so that
 p1.is_equal(p2)
and
 equal(p1,p2)
would both yield true in the above case.

Unfortunately, comparing objects is still more complex than the above
example indicates If any of the objects' attributes are themselves of a reference
type, then is_equal and equal will simply compare the addresses to which the
attributes point, and will yield true only if they point to the same address, as
figure 6.6 illustrates. Here the problem is that one of the attributes is itself a
reference type, and although the value of name is, in each case, 'Jim Perera', the
address of each will differ. The routines is_equal and equal will not do a deep
comparison of two structures, but will compare only the first level of each
structure. So whereas p1.name.is_equal(p2.name) yields true, what is critical is
that p1.name = p2.name yields false, and therefore p1.is_equal(p2) yields false.

Classes, Objects and Instantation 83

83

name

age

sex 'M'

31

id 95324

name Jim Perera

p1

p2
age

sex 'M'

31

id 95324

Jim Perera

figure 6.5

To do a recursive comparison of classes, the following routines must be
used:

is_deep_equal(other:like Current):BOOLEAN.
deep_equal(some:ANY;other:like some):BOOLEAN.

These functions will expand all the references and so do a field by field
structural comparison, so that

p1.is_deep_equal(p2)
would yield true.

There are similar difficulties with copy. So for example p1.copy(p2)
would produce two objects which each shared another object of type STRING;
so that the condition p1.name = p2.name would yield true, and p1.is_equal(p2)
would also yield true, as shown in figure 6.7.

p2
age

sex 'M'

31

id 95324

name

age

sex 'M'

31

id 95324

name

p1

Jim Perera

 Eiffel Object Oriented Programming 84

figure 6.7

In order to avoid any sharing of memory there is a deep_copy so that the call
p1.deep_copy(p2) would produce two completely separate objects, each of
which contained the same data values.

p2
age

sex 'M'

31

id 95324

name Jim Perera

age

sex 'M'

31

id 95324

name Jim Perera

p1

figure 6.8

In the case shown in figure 6.8 the following would yield true:
p1.is_deep_equal(p2);
deep_equal(p1,p2)
p1.name.is_equal(p2.name)

but the following would yield false:
p1.is_equal(p2);
equal(p1,p2);
p1=p2
p1.name = p2.name

6.6 Cloning objects

In order to copy one object to another, the target must already have been
instantiated: a call may not be made to a target that does not exist. Eiffel
provides routines in class ANY which enable us to avoid this problem, and to
combine the actions of creation and copying in one operation:

clone(other:ANY): like other;
deep_clone(other:ANY): like other;

Classes, Objects and Instantation 85

85

Clone and deep_clone are functions which return new objects which are
copies/deep_copies of the object passed in as an argument. They are normally
used on the right hand of assignment statements, e.g.

p1 := clone(p2);
and in such cases the target of the assignment may be void. These functions
may also be used as arguments to other routines. For example the following

any_target.any_routine(clone(an_obj))
would ensure that an_obj was unaffected by any action performed internally by
any_routine, since what was being passed in would be a copy of an_obj, rather
than an_obj itself. The use of deep_clone would of course be even safer.

Exercises

1. Examine the example in 6.3 and work out the following:
a) Which attributes of Class PERSON cannot be read by any client

class?
 b) Which attributes of Class Person cannot be altered by any Client

class?
 c)Which attributes does employer have read only access to?
 d) Which attributes is class employer able to alter?

 2. a) Look in class GENERAL at the routines available for comparing,
copying and cloning objects. Make notes on the difference between the deep
and the shallow versions of these;

b) Clone is a constructor; copy is a transformer; explain the difference
between a constructor and a transformer;

b) Implement classes PERSON and CONTROLLER. Declare and create
two instances of PERSON. Assign the same data to each, and investigate the
results of using: =, is_equal, is_deep_equal, copy, and deep_copy

86

7. Classes STRING and ARRAY.

Strings and arrays are fundamental to programming. In Eiffel they are not a
part of the languages, but are provided in class libraries. There are some
differences between the libraries for STRING and ARRAY produced by
different vendors, but fortunately there is a great deal of standardisation. The
author has moved relatively freely between ISE Eiffel and Eiffel/S in preparing
this chapter.

7.1 Class STRING

Strings have already been briefly introduced in chapter 2, when it was
shown how strings could be written in a class source, how attributes and
constants could be declared, how assignments could be made, and how strings
could be output to the screen. Treatment of strings in this chapter begins with
comparison of strings, then considers problems of assignment, and concludes
by looking at other string handling facilities. In order to take full advantage of
the facilities available for string handling the reader is encouraged to study the
class listing.

7.2 String comparison

Strings are ordered: class STRING inherits from class COMPARABLE,
and the standard relational operators which are defined there are available:
 > >= < <=
The following expressions yield the boolean values indicated:
 "Smith" < "Simon" -- false
 "Smith" >= "Smith" -- true
 "Simon" < "Smith" -- true

"Robert" <= "Smith" -- true
The test for equality follows the same rules as those for other reference classes.
The = operator yields true only if the two strings being compared are actually
the same string. In the case shown in figure 7.1, in which the entities a_string
and b_string are attached to the same object

S m i t h

a_string

b_string

figure 7.1

a_string = b_string would yield true. In the next case

 Classes STRING and ARRAY 87

S m i t ha_string

b_string S m i t h

figure 7.2

the expression a_string = b_string would yield false. When testing two strings
for equality therefore it is necessary to use the is_equal routine, inherited from
ANY and redefined for class STRING. The boolean expression

a_string.is_equal(b_string)
would yield true in both the cases shown above.

7.3 String creation and assignment

As for other reference types, memory is dynamically allocated for instances of
class STRING. It is also possible however, to do this at compile time by
declaring its contents in an assignment instruction:
 c_string := "Patel"
Unless this is done, the default value for a string is Void. To create a string at
run-time, a creation instruction is used with the creation routine make:

!!a_string.make(10);
 !!b_string.make(6)
This would create two strings, the first with the capacity to hold 10 characters,
the second with the capacity to hold 6. Each string would be filled with blanks.
Despite the requirement to set the capacity initially, a string is automatically
resized if it requires more space.

If after creation, either a_string or b_string were to be used as the left
hand of an assignment then the blank object created would be lost, and the
strings would be pointing to a new object. So for example the result of

a_string := c_string
would be as shown in figure 7.3.

 previous attachment

c_string

a_string

B A L L

S M I T H

figure 7.3

 Eiffel Object-Oriented Programming 88

Since STRING is a reference type, a_string would now be pointing to the same
object as the entity on the right hand side of the assignment statement. The
object to which it was previously attached would now be lost.

If we wished to attach a_string to a separate object containing the same
characters as c_string then there are two alternatives available:

a_string := clone(c_string);
a_string.copy(c_string);

It may be remembered that the routine clone is a constructor defined in class
GENERAL, and available to instances of all classes. It creates a new instance,
which contains a copy of its argument. The routine copy is a transformer
routine, redefined for class STRING, which copies its argument to the target of
the call. In the case of clone, the target of the assignment may be void; in the
case of copy, the target of the call must not be void, otherwise a run-time error
will occur.

7.4 String manipulation

This section provides a brief guide to the operations available in class STRING.
There are a number of useful transformer operations that may be performed on
instances of class STRING.

Class STRING: Transformer Routines

append -- places a string after target string
prepend -- places a string before target string
precede -- places a character before target string
extend -- places a character after target string
put -- place a character at i-th position
fill_blank -- fills target string with blanks
head -- removes all but first n characters

 tail -- removes all but last n characters
left_adjust -- removes leading blanks from target string
right_adjust -- removes trailing blanks from target
remove -- removes i-th character from target
remove_all_occurrences

 -- removes all occurrences of a specified character
to_lower -- converts target to lower case
to_upper -- converts target to upper_case

There is also a constructor routine, substring, which returns a copy of
all the characters between n1 and n2. For example, if c_string was attached to
an string object containing the letters "anabolic steroids", then
 io.put_string(c_string.substring(6,10))
would display on the screen:

 Classes STRING and ARRAY 89

lic s
and

c_string :=c_string.substring(10,17))
would attach c_string to an object containing "steroids". It would also be
possible to have a chain of calls to substring as follows:

io.put_string(c_string.substring(3,10).substring(3,6).substring(2,4));
 which, given the original attachment,"anabolic steroids" would display on the
screen the three letters: lic

There are also features which may be used to query the state of a string:
count -- returns actual number of characters in a string
empty -- returns true if count = 0

So that io.putint(c_string.count) would display 17 on the screen.
This brief treatment of class STRING concludes with a solution to the

following problem:
A text analyser wishes to be able to analyse the occurrence of
pairs of characters in a string - for example the character pair
"an" occurs four times in the following string:

"Smalltalk is an object-oriented language and so are CLOS,
Self and Actors "

Note that "an" "AN" "An" "aN" are considered equal. So we must either
convert both arguments to upper, or both to lower case. If this is not done then
when we compare characters of different case, e.g. "A" and "a" they will not be
interpreted as being equal.

In the solution given below both arguments have been cloned. Had this
not been done, tthen the instructions

a_string.lower
a_string.upper

which change each of the arguments to lower case, would have changed the
strings in the caller, with possible undesirable consequences. It is necessary to
change the strings either to lower or to upper case for reasons already given.
Once this has been done, the algorithm uses a loop which begins at the first
character in the string s, and compares it and its successor character with
character_pair. If they are equal then it increments Result. This process
continues until the counter i is equal to the size of the string s, at which point
the loop terminates and the value in Result is passed back to the caller.

 occurs(a_string:STRING; character_pair:STRING)
:INTEGER is

local
 i:INTEGER;
 s,c:STRING

do

 Eiffel Object-Oriented Programming 90

 s := clone(a_string); -- copies arguments to avoid side
-- effects

 c := clone(character_pair);
 c.to_lower; -- transforms to lower case
 s.to_lower;
 from i = 1
 until i = a_string.count

loop
if s.substring(i,i+1).is_equal(c)

then Result := Result + 1
 end -- if

 i := i + 1;
 end -- loop

end -- occurs

Example 7.1 Routine which counts character pairs in a string

The reader may try this by inserting it in an existing root class such as
SIMPLE. The routine could then be called as follows:

io.putint(occurs("Smalltalk is an object-oriented language
and so are CLOS, Self and Actors","an"));

which should output the integer 4.

7.5 . Class ARRAY

Facilities for handling arrays are provided by class ARRAY which is part of the
basic cluster of classes. As with STRING there are some differences between
implementations, but the basic facilities provided for insertion and accessing
arrays are fairly standard.

An array is best viewed as a variable capable of holding a sequence of
values of the same type, often described as its element type. Its advantage as a
data structure is the speed of retrieval and insertion made possible by an index
or subscript which contains the relative address of the element being accessed.
For example if an array begins at address 10000, and each element takes 2
words of memory, then the absolute address of the 20th element in the array is
readily calculated as 10038.

An array of Integers, I, which holds 7 values is shown in figure 7.4.

 Eiffel Object-Oriented Programming 90

12 9 8 2117905

1st 2nd 3rd 4th 5th 6th 7th

figure 7.4

If we wished to reference the 5th element we would, depending on the program
language, refer to it as

I(5) or I[5],
because a standard keyboard does not allow us to write

I 5 .
 In order to use an array in Eiffel, a class must either inherit from or be a
client of class ARRAY. This chapter deals only with the client relationship.
ARRAY is the first generic class that we have covered so far; this is denoted by
its heading:

class ARRAY[G]
The [G] is a formal parameter, and indicates that we can instantiate an array
with any class as the actual parameter - we can have an array of INTEGER,
REAL, PERSON and so on (see chapter 10 for further discussion of genericity).
Such arrays could be declared as shown below:

feature
names :ARRAY[STRING];
employees : ARRAY[PERSON]
sensor_readings: ARRAY[REAL];

7.6 Array creation

Before any operations may be performed on an array, it must first be
allocated memory using a creation instruction. For class ARRAY a creation
routine is defined as shown below:

make(minindex:INTEGER; maxindex:INTEGER);
An instruction such as

!!employees.make(1,100)
would allocate memory for 100 instances of class PERSON. It should be noted
that we do not have to use 1 as the minimum index. It could, for example, have
been set to 0, and the maximum index to 99; one or both could have been set to
negative integers. We must of course ensure that the second argument is not
smaller than the first. The minimum size of an array is 1.

Amongst the other features of class ARRAY which are available are
those which provide information about its size:

count -- returns the length of the index interval;
lower -- returns the lower index bound
upper -- returns the upper index bound

Classes STRING and ARRAY 91

Given our initial creation instruction, lower would return 1, upper would return
100, and count would return 100. If we used different arguments with make,
e.g. !!employees.make(-5,20), as shown in figure 7.5,

lower upper

-5 -4 -3 -2 -1 20191817.....

figure 7.5

lower would now return -5, upper would return 20, and count would return 26,
(upper + 1 -lower).

7.7 Array insertion and retrieval

As indicated already, basic array operations involve direct insertion and
retrieval of elements. To insert an element in an array in Eiffel we may use the
routine put, and to retrieve an element we may use the routine item, or its infix
form "@" :

put (element : G; index : INTEGER);
infix "@" , item (index :INTEGER) : G;

Put requires two arguments, the element to be inserted, and the index position
at which it is to be inserted. Item returns a result of whatever type the array
contains; it requires a single argument, the index position of the element to be
retrieved.

We may illustrate the use of these routines with the array of integers
shown earlier, which we would declare in Eiffel as follows:

I:ARRAY[INTEGER]
To access the 5th location we would write the following

I.item(5)
or, using the infix form:

 I @ 5
To insert the value 3 at the 6th position , and the value 99 at the 7th position
we would write the instructions

 I.put(3,6);
I.put(99,7)

Our array would now be updated as shown in figure 7.6

 Eiffel Object-Oriented Programming 92

12 9 8 993905

1st 2nd 3rd 4th 5th 6th 7th

figure 7.6

The values 17 and 21, which were previously stored at the 6th and 7th
positions would, as indicated, have been replaced by the values 3 and 99.

We may now look at the root class ARRAY_EXAMPLE defined in
example 7.2. This class contains an array of INTEGER, store. It contains three
routines: the creation routine start, a routine which fills the array with elements
entered at the keyboard, and a routine which prints them out in order.The
reader should note the use of upper and lower. It is sensible to use this rather
than the integers 1 and 7: if the size of the array was changed, no other change
would be required to any instruction other than the creation instruction.

The reader should note the use of the routine put to insert an element in
the array, and of item to retrieve it. In the case of each loop used, index has
been set to lower -1, and the exit point defined as upper. Had index been
initially set to lower, then the exit point would be > upper, and the instruction
which increments index would need to be placed at the end of the loop.

class ARRAY_EXAMPLE
creation

start
 feature

store:ARRAY[INTEGER];

fill_array is
-- fills array with integers entered from keyboard
local

index:INTEGER;
 do

 from index = store.lower -1
 until index = store.upper

 loop
 index := index + 1;

 io.readint;
 store.put(io.lastint,index);
 end -- loop
 end -- fill_array

print_array is
-- displays contents of array on screen

local
index:INTEGER;

Classes STRING and ARRAY 93

 do
 from index := store.lower-1

until index = store.upper
loop

index := index + 1;
io.putint(store.item(index));

end -- loop
 end -- print_array
 start is
 do

!!store.make(1,7);
 fill_array;
 print_array;

 end -- start
end -- ARRAY-EXAMPLE

Example 7.2 Arrays:insertion and retrieval

Should the reader wish to use this with STRING, then fill_array should be
amended as follows: clone should be used to insert a copy of io.last_string.

7.8 Dynamic array operations

Although the creation routine requires an array's size to be specified, it is
possible to make the array grow during program execution. This may be done
either by explicit resizing, or by using the routine, force, which automatically
resizes the array if it is necessary.

The routine, resize, allows us to alter the size of an array by specifying
new upper and lower indices. For example
 store.resize(0 ,15)
would set new upper and lower indices with the results indicated:

store.count -- would now return 16
store.lower -- would now return 0
store.upper -- would now return 15

The feature force which may be used instead of put to insert items in the array
has the effect of automatically resizing the array if the specified index falls
outside the current bounds. So that if we have an array with 7 elements, as
previously specified, and we make the call

I.force(2,8)
then the array would automatically be resized to allow the value 2 to be inserted
at the 8th position.

7. 9 Sorting an array

 Eiffel Object-Oriented Programming 94

This section provides an example of the use of Eiffel array handling facilities to
sort an array.

class ARRAY_EXAMPLE;
creation

start
 feature

store:ARRAY[INTEGER];
-- fill_array
-- print_array

 sort_array is

-- sorts array in ascending order
 local
 sorted:BOOLEAN;
 temp_item: INTEGER
 index, last :INTEGER;

do
 from

last := store.upper ;
 sorted := false;
 until sorted or else last = store.lower
 loop
 from

sorted := true
index := store.lower -1
last := last-1

 until
index = last

 loop
 index := index + 1;
 if store.item(index) > store.item(index+1)
 then

-- swap element with successor element
 temp_item := store.item(index+1);
 store.put(store.item(index),index+1);
 store.put(temp_item,index);
 sorted := false;
 end -- if

end -- loop
 end -- loop
 end -- sort_array
 start is
 do

!!store.make(1,7);

Classes STRING and ARRAY 95

 fill_array;
sort_array;

 print_array;
 end -- start

end -- ARRAY-EXAMPLE

Example 7.3 Sorting an array

The sort_array routine (example 7.3) has one loop nested within the
other. The inner loop does the work: it checks that each element is smaller than
its successor, and if not it swaps them. The effect of one iteration of the inner
loop is to guarantee that the largest element is in the last position. Once this is
done, last is then decremented by the outer loop, and the process starts again. It
continues until either the inner loop makes a complete pass without finding any
element out of order, or until last becomes equal to store.lower. The use of
upper and lower has the advantage that it allows us to sort an array of integer
of any size. We should, however, only get the full benefit of using an object-
oriented language if we could write it so that it could sort arrays of any ordered
type (any type which inherits from class COMPARABLE) including types
STRING and CHARACTER. This could be done by rewriting the routine
header, and making store a formal argument instead of a feature, as shown in
example 7.4.

 class SORT_ROUTINES
 feature
 sort_array (store:ARRAY[COMPARABLE]) is

local
temp_item:COMPARABLE;

-- sorts array in ascending order
-- remainder of code unchanged - see example 7.3

end -- sort_routines

Example 7.4 Header for a reusable sort routine

The major change required is that of the first line, as indicated above. The new
formal argument declaration requires an array as the actual argument; the
element type of the array must be a class which inherits from class
COMPARABLE. Also the local variable, temp_item, would need to be declared
as

temp_item:COMPARABLE

 Eiffel Object-Oriented Programming 96

to allow elements of any type to be assigned to it during the swap
operation.The routine has been placed in a separate class, SORT_ROUTINES,
and could be declared and used in a client class as shown in 7.5. It could of
course also be inherited.

 class ANY_CLASS
feature

s:ARRAY[STRING];
 sorter: SORT_ROUTINES;

 any_routine is
do

!!sorter;
 sorter.array_sort(s);

end -- any_routine
end -- ANY_CLASS

Example 7.5 Calling Reusable Sort Routine

A better solution to this problem is given in chapter 10, which shows how a
generic class, SORTABLE_ARRAY, could be constructed.

7.10 Manifest arrays

In the same way that it is sometimes useful to be able to initialise a string at
compile time, so it may also be useful to be able to describe an array by listing
its contents. Eiffel allows us to do this by declaring a manifest array. The
original integer array given in figure 7.4 could have been initialised as follows:
 I := << 12, 9, 8, 5 , 90, 17, 21 >>
This is certainly simpler than the sequence of calls which would otherwise be
necessary.

!!I.make(1,7);
I.put(12,1);
I.put(9,2);
.....
I.put(21,7);

It is also possible to use a manifest array as an actual argument to a routine.
Given for example a routine defined as
 print_Array(a:ARRAY[INTEGER])
it would be permissible to write the actual call as

print_Array(<< 12, 9, 8, 5 , 90, 17, 21 >>)

7.11 Matrices and n-dimensional arrays

Classes STRING and ARRAY 97

 So far this chapter has covered single dimension arrays. Frequently however
we need an array with two or more dimensions. In some cases a two-
dimensional array may be included in an Eiffel class library, but if not it would
be relatively simple to construct. We shall begin by showing how in Eiffel we
can declare and manipulate a matrix such as that shown in figure 7.7, using the
facilities provided by class ARRAY.

j (column)

i (row)

1 2 3 4 5

1

2

3

4

figure 7.7

The Eiffel declaration would be written as follows:
 matrix :ARRAY[ARRAY[INTEGER]]
It is therefore an array of array of integer, as shown in figure 7.8. It is therefore
an array of references, each of which points to an array of integers. To store an
item 10 in position 4,3 therefore we first have to retrieve the 4th array, and then

1

2

3

4

figure 7.8

 Eiffel Object-Oriented Programming 98

to place the item in the third position:
 matrix.item(4).put(10,3)
To put the element 15 at row 3 column 5 we would similarly write
 matrix.item(3).put(15,5)
and to write an instruction which would display the element at 1,3 we would
write

 io.putint(matrix.item(1).item(3))
It should be noted that as with one dimensional arrays, the declaration tells the
compiler nothing about the size of the array. This is done when it is created at
run-time. To create matrix it is necessary to allocate memory for the array of
arrays, and then for each of the four arrays of INTEGER.

It would be sensible to use constants to define the number of rows and
number of columns, and to use a loop to allocate memory to each row, as shown
in example 7.6. This would make modification easier should we later require a
matrix with different dimensions.

 class MATRIX_EXAMPLE
creation

make
feature

matrix :ARRAY[ARRAY[INTEGER]];
 rows: INTEGER is 4;

columns: INTEGER is 5;

make is
local

index:INTEGER;
temp: ARRAY[INTEGER]

 do
 !!matrix.make(1,rows);

 from index := 0
 until index = rows
 loop

index := index + 1;
!!temp.make(1,columns);
-- this ensures a different array is
-- created each iteration
matrix.put(temp,index);

 end -- loop
 end -- make

end -- MATRIX_EXAMPLE

Example 7.6 Creating an array of array

Classes STRING and ARRAY 99

It should be noted that make uses a local one-dimensional array, temp, and that
memory is allocated to this on each iteration of the loop; unless new memory is
allocated each time, the underlying memory allocation would be as shown in
figure 7.9.

1

2

3

4

figure 7.9

To perform searches or sequential retrieval of the elements in our two-
dimensional array we should need to use nested loops, as shown in the print
routine defined below.

 class MATRIX_EXAMPLE
creation

make
feature

-- matrix and make as before
print_matrix is
local

row_index,col_index :INTEGER;
do

from row_index := 0
until row_index = rows
loop

row_index := row+_index + 1;
from col_index := 0
until col_index = columns
loop

col_index := col_index + 1;
io.put_integer(matrix.item(

 row_index).item(col_index));
end -- loop

 Eiffel Object-Oriented Programming 100

end -- loop
end -- print_matrix

end -- MATRIX_EXAMPLE

Example 7.7 Traversing a two-dimensional array

It is possible to create arrays with greater than two dimensions. For
example we might think of a data structure which is used by a retailing
company to keep the daily sales details of each department within each of its
stores. The Company has 120 stores, and each store has 10 departments. We
will assume that each store opens 52 weeks in a year and 6 days in a week.
When it is not open the value 0 will be inserted as its sales figure. The data
structure will be used to calculate responses to queries such as:
 which was the best store in week 6?
 which hardware department did best in week 6?

which of the 10 departments did best in all stores in weeks 5 to 10?
 what were the total sales of a given store for the whole year
 what were the total sales for all stores in week 52?
To store the information we need a four-dimensional array. The dimensions of
the array are:
 52 weeks X 6 Days X 120 stores X 10 departments
This gives a total of 374400 cells , each of which contains a real number.

1 1 1 1

52 6 120 10

1209.6

763.25

Week Day Store Department

21 1 1 345.55

52 6 120 9 800.23

26 6 10120

27 1 1 1

937.50

1012.34

0

figure 7.10

From figure 7.10 it can be deduced that the first item in the array will be the
sales total for department 1 in store 1 on day 1 of week 1, namely 1209.60. The

Classes STRING and ARRAY 101

next will be the sales for department 2 - same week, day and store - 345.55.
The last item in the array will be the figure for department 10 of store 120, on
day 6 of week 52 - 763.25.

To implement this in Eiffel we would declare an array as follows:
 group_sales: ARRAY[ARRAY[ARRAY[ARRAY[REAL]]]]
To process this would require a nested loop structure which reflects the
structure of the array itself. This is shown in the following solution for the
creation procedure, and as with the matrix shown earlier in this section, would
be true of any process requiring sequential interrogation of the whole array.

class STORE_SALES
creation

make
feature

max_store : INTEGER is 120;
 max_week: INTEGER is 52;

max_day: INTEGER is 6;
 max_dept: INTEGER is 10;

group_sales: ARRAY[ARRAY[ARRAY[ARRAY[REAL]]]]

make is
 local

 dept_sales:ARRAY[Real];
 store_sales:ARRAY[ARRAY[REAL]];
 day_sales:ARRAY[ARRAY[ARRAY[REAL]]];

week, day, store, department:INTEGER;
 do
 !! group_sales.make(1,max_week);
 from

week := 0
 until

week = max_week
 loop
 week := week + 1;
 !!day_sales.make(1,max_day);
 from

day := 0
 until

day = max_day
 loop
 day := day + 1;
 !!store_sales.make(1,max_store);
 from

store := 0

 Eiffel Object-Oriented Programming 102

 until
store = max_store

 loop
store = store + 1;
!!dept_sales.make(1,max_dept);

 store_sales.put(dept_sales,store)
 end -- store loop
 day_sales.put(store_sales,day)
 end -- day loop
 group_sales.put(daily_sales,week)

end -- week loop

 end -- make
end -- STORE_SALES

Example 7.8 Traversing a four-dimensional array

It should be appreciated from example 7.8 that for every iteration of the outer
loop, the day loop iterates 6 times; and for every iteration of the day loop, the
store loop iterates 120 times. A representation of the array is given in figure
7.11.

Week

Day

Store

Sales figures

(1 array)
52 elements

52 arrays
Each with
6 elements

312 arrays
Each with 120 elements

37440 arrays

Each with 10
elements

figure 7.11

Clearly, this is a very complicated underlying structure. To access the sales
return of the 10th department for store 1 on day 2 of week 17 we would write

group_sales.item(17).item(2).item(1).item(10)
Normally we would not wish to create such a complex structure, and if we
wished to use an array to store items organized in that way we would usually

Classes STRING and ARRAY 103

map them on to a one-dimensional array. This would enable us to access the
element we required using more conventional notation e.g.
 group_sales.item(week,day,store,dept)
This would be conceptually simpler to understand and implement - and it
would also offer greater potential for re-use. This will be further explored in the
next section.

7.12 Mapping an n-dimensional array on to a vector

Multi-dimensional arrays are usually mapped on to the computer's memory in
row-major order. For example the elements in a 4 X 5 matrix would normally
be mapped as shown in figure 7.12.

0

1

2

3

row 1 col 1

row 1 col 2

row 1 col 3

row 1 col 4

19 row 4 col 5

18 row 4 col 4

figure 7.12

Example 7.9 shows how this could be done in Eiffel, using mapping functions
to transform the column and row coordinates into a single subscript .

 class INTEGER_MATRIX
creation

make
feature

matrix:ARRAY[INTEGER]
columns: INTEGER;
rows:INTEGER;

put(element :INTEGER; row,col:INTEGER) is
do

 matrix.put(element, (row-1)* columns+col-1)
 end -- put
 item(row,col:INTEGER):INTEGER is
 do

Result := matrix.item((row-1)*columns+col-1)
 end -- item

 Eiffel Object-Oriented Programming 104

 make(n_row,n_col:INTEGER) is
do

 !!matrix.make(0, n_row*n_col-1);
 columns := n_col;

rows := n_rows;
 end -- make

end --INTEGER_MATRIX

Example7.9 Mapping functions for accessing a matrix

We can illustrate how this works with a 4 X 5 matrix. A client class which
declares an attribute

integer_store :INTEGER_MATRIX
would use the creation instruction, !!integer_store.make(4,5). This would
allocate space for a one-dimensional array with a lower bound of 0 and an
upper bound of 19. The instruction !!integer_store.put(17,2,2) would store
17 in location 5. The mapping function would calculate this as follows: (2-1) *
4 + 2 - 1. Likewise, the call, integer_store.item(4,5), would access the element
at location 19, the upper location in the array. In this case the mapping function
would calculate as follows: (4-1) * 5 + 5 - 1,

This matrix is reusable for any size of integer matrix. To develop a truly
reusable matrix, a genric class must be written. Discussion of how to do this is
postponed until chapter 10.

7.13 Comparing and copying arrays

The routines copy and is_equal are redefined for class ARRAY to allow arrays
of arrays to be copied and compared. This works well as long as the elements
stored in the arrays are basic types or other expanded types, but if instances of
reference types are stored in the arrays then copy will result in each array
sharing the same data. In this situation deep_copy and is_deep_equal should be
used.

Exercises

1. a) Write a constructor routine
replace_with(old_char,new_char:CHARACTER; s:STRING): STRING

 which returns a string so that, for example,
io.put_string(replace_with("a","*","alcoholics anonymous"))

would output "*lcoholics *nonymous";
 b) what changes would need to be made to convert the above routine into a
transformer? (Assume that the class of which it is a feature, has an attribute,
s:STRING)

Classes STRING and ARRAY 105

2. Implement ARRAY_EXAMPLE so that it stores and sorts strings.

3. Amend ARRAY_EXAMPLE to allow it to use class SORT_ROUTINES.

4. Given the array of array shown in example 7.6, write Eiffel code which
would do the following:

a) put the value 17 in cell 4, 2;
b) retrieve the item in cell 3, 6;
c) retrieve the whole of row 3
d) replace the existing row 3 with the values, 12, 10, 9, 15, 31

(Hint, use a temporary variable and a manifest array)

5. Write the following routines for class STORE_SALES:
 a) best_store(wk:INTEGER):INTEGER; -- returns best store for w

b) weekly_sales(wk:INTEGER):REAL;--returns total sales for wk
c) daily_sales(wk,day:INTEGER):REAL;-- returns total for wk and day

106

8. Assertions and Software Correctness.

Software systems have been beset by errors since the dawn of the
computing age. Type checking has enabled a number of potential errors to be
eliminated at the compilation stage. There are, however, many other sources of
error which a compiler cannot detect, and the more complex the system the
harder it is to eliminate all potential errors.

A philosophy which promotes the building of software systems from
components ought to reduce the amount of errors. The more tried and tested
components are re-used, the more certain that software will perform correctly -
provided that we understand how to use those components, and do not push
them beyond their limits. This requires an accurate specification of what a
component will do, as well as the constraints on its use - a contract between the
supplier and the user of the component.

Eiffel is unique among object-oriented languages in that it was designed
from the outset to enable a programmer and a system builder to produce a
formal contract for a software component. If properly used, an Eiffel class is a
formal specification of what an instance of that class will do, and of how it
should be used. The language designer has drawn on abstract data type theory
and formal approaches to software design to provide Eiffel with a set of
facilities for making assertions about the correctness of classes, routines and
loops. These can be switched on during the testing stage and can prove an
important aid to testing and debugging.

The use of assertions in Eiffel is illustrated with two case studies, one of
which has already been introduced. Later sections provide brief introductions to
exception handling and debugging facilities.

8.1 Preconditions and postconditions

In chapter 5 the syntax of a routine was defined as shown below:

<routine_name> [formal argument list] [":" <result-type>] is
[preconditions]

 [local declarations]
 do
 compound instruction
 [postconditions]
 end

As this syntax indicates, each may have a precondition and a postcondition.
These are boolean expressions which are compiled and may be checked at run-
time. Preconditions and postconditions derive directly from a view of software
development as a contract between the client and the provider of services. A
precondition defines the client's responsibility: it stipulates those conditions
that must be met at the point when a routine is called. The postcondition is the
supplier's part of the contract: it stipulates what will be true on exit from a

 Assertions and Software Correctness 107

routine, provided the pre-conditions were met on entry. It says nothing about
what will happen if preconditions are not met. The supplier is not required to
take action to deal with a client's failure to meet preconditions, and indeed is
discouraged from doing so. At first sight this may seem odd, but it is a
deliberate attempt to break away from 'defensive programming' which can lead
to duplication of checking by users and suppliers of routines, to consequent
inefficiency, and more importantly perhaps, to confusion as to who is
responsible for what.

The syntax for preconditions and postconditions in the Eiffel language
may be defined as follows:

Precondition:
require [else]

Assertion_clause {";" Assertion_clause}

Postcondition:
ensure [then]

Assertion_clause {";" Assertion_clause}

An assertion clause may be defined as
[Identifier ":"] (Boolean expression | Comment)

Syntax diagrams for each of these are given in figures 8.1 and 8.2.

require identifier ":"

";"

else

boolean-exp

comment

figure 8.1

identifier ":"

";"

then

boolean-exp

comment

ensure

figure 8.2

 Eiffel Object-Oriented Programming 108

The optional else and then relate to the redefinition of inherited features and
the effecting of deferred features. These are more advanced topics which are
covered in chapters 11 and 12.

A precondition comes immediately after the is in the routine declaration,
and the postcondition comes in the body of the routine, after the instructions.
Example 8.1 returns to class BANK_ACCOUNT, which was first introduced in
chapter 5, and which the reader was recommended to develop as an exercise.

class BANK_ACCOUNT
creation

make
feature

id_no: INTEGER;
balance: REAL;
credit_limit: REAL;

 name: STRING;

make(cust:STRING;limit:REAL;id:INTEGER) is
do

name := cust;
 credit_limit := limit;

 id_no := id;
end -- make

debit_amount(amount:REAL) is
do

 balance := balance - amount;

end -- debit_amount;
amount_available: REAL is
do

 Result := credit_limit + balance;
end -- amount_available
change_id(old_no, new_no:INTEGER) is
do

 if old_no = id_no
then id_no := new_no

 else io.put_string("invalid current id")
 end -- if

end -- change_id
end -- BANK_ACCOUNT

8.1 Class BANK_ACCOUNT

 Assertions and Software Correctness 109

The transformer routine, debit_amount, may now be amended as shown in
example 8.2, by the addition of two preconditions and one postcondition.

The first precondition indicates that the argument, amount must be a
non-negative real number - and also not 0, since it makes no sense to deduct 0
from an account. This ensures that a client will not pass in a value such as
minus 1000, on the assumption that a debit is naturally a minus figure. The
second precondition requires that the amount being debited does not exceed the
money available.

debit_amount(amount:REAL) is

 require
 amount > 0;

amount <= amount_available
 do

balance := balance - amount;
 ensure
 old balance = balance + amount

 end -- debit_amount;

Example 8.2 Preconditions and postconditions

 It is permissible to precede each assertion with a tag; the tag is displayed
on the screen if a violation is triggered during debugging. So the precondition
could have been written as shown below.

require
non_negative :

amount > 0;
 credit_limit_not_exceeded:

amount <= amount_available
The use of tags clearly aids readibility, as well as providing additional
information at run-time.

The postcondition of the above routine indicates that provided the
precondition is met, amount will be subtracted from balance. To do this it uses
the keyword old to precede amount; old amount refers to the value stored in
amount at the time when the routine was entered. Again a tag could have been
used:
 ensure

 has_been_debited: old balance = balance + amount
Clearly this is a relatively simple example, but even so the writing of
preconditions and postconditions has forced us to clarify precisely what the
routine does, and to put it in a machine readable form that can trap possible

 Eiffel Object-Oriented Programming 110

errors at debug time. In particular we have avoided the possibility of a
programmer writing a line such as
 debit_amount(-1000)
which would soon be disastrous for the financial health of the bank.

Example 8.3 gives the preconditions and postconditions for a new
transformer routine, credit_amount, which adds money to an account.

 credit_amount(amount:REAL) is
 require

 non_negative: amount > 0
 do

 balance := balance + amount;
 ensure

 is_updated: old balance = balance - amount
 end -- credit_amount;

Example 8.3 Further preconditions and postconditions

These may be tested from class CONTROLLER. To do so the reader should
ensure that preconditions and postconditions are switched on. This will require
an amendment to the ACE file. The following should be inserted after the
default keyword:

assertion(all)

class CONTROLLER
creation

test
feature

account:BANK_ACCOUNT;
test is

--tests preconditions and postconditions
do

 !!account.make("Milton Obote",500.00, 9999);
account.credit_amount(20.00);
account.debit_amount(520.50);

end -- test

end -- CONTROLLER

Example 8.4 Testing a precondition

Example 8.4 should generate an exception after the debit-amount call, because
the 520.50 exceeds the amount available. The reader may care to make other
tests, for example introduce a deliberate error into the debit_amount body, such

 Assertions and Software Correctness 111

as, balance := balance + amount, and see whether the postcondition generates
an exception.

8.2 Class invariants

A class invariant is another kind of assertion, in this case an assertion about the
state of an instance of a class. The assertions defined in the class invariant
clause must be true on entry and on exit. The invariant comes at the end of the
class, and is formed similarly to preconditions and postconditions:

invariant
Assertion_clause {";" Assertion_clause}

We can now add two invariants to class BANK_ACCOUNT as shown in
example 8.5.

 class BANK_ACCOUNT
feature

.............................
invariant

limit_is_negative: credit_limit <= 0;
 is_within_credit_limit : balance >= credit_limit;

 end -- BANK_ACCOUNT

Example 8.5 Class invariants

The invariants that have been selected perhaps need some explanation. The
is_within_credit_limit condition is related to the precondition for debit_amount.
It guarantees that at all stable times the value in amount will not be smaller
than credit_limit. Likewise the assertion, limit_is_negative, tells us that the
credit limit on any account will either be zero (no credit) or a negative value,
and that any attempt to alter this to a positive number will be a violation of the
invariant and will trigger an exception if the class invariant check is switched
on. The reader might object that this is a curious way to store a credit limit, but
the assertion mechanisms have made us reason about it and produce a
consistent set of routines, and a class that can be demonstrated to be safe.

8.3 Case study: class CLOCK

This section illustrates how assertions may be used in developing a new class,
CLOCK, which will be taken from the early stages of specification through to
implementation and testing. Class, CLOCK, is depicted in 9.3.As can be seen
this is rather a strange kind of clock. In fact it is not really a clock at all, but
simply a device which stores the time that we input, and displays it on request.
It has an on off button, currently set to off, and a small screen for displaying the
time. There are three buttons for manipulating the clock - one sets the time, one

 Eiffel Object-Oriented Programming 112

displays the time stored in the clock, the other increments the clock by one
second. At the bottom there is a keyboard for inputting the time after the set
button has been pressed. The buttons include one for entering a colon between
numbers e.g. 15:24:50.

Set Display Inc

1 2 3 4 5

6 7 8 9

off

on

0

:

figure 8.3

Three INTEGER attributes are needed to store the state of an instance,
hour, minute and second, and four services must be offered. Each of the
services now needs fuller discussion.

display -- displays state of the clock on the screen

set -- a transformer
-- sets time to hh:mm:ss as input via keyboard

 -- hh must be < 24; mm <=59 ss <= 59
 -- no effect on screen

increment -- a transformer
 -- advances clock by one second

 --ensure that second 59 changes to 0 and increments minute
 --ensure that when minute is 59 and second is 59, hour is
 incremented and hour and minute are set to 0

-- time must be < 23:59:59
 -- no effect on screen

switch-on -- internal time set to 0:0:0

 Assertions and Software Correctness 113

 -- time displayed on screen

There is no switch-off button: we have no interest in the state of a clock when it
is switched off.

This is a reasonably comprehensive description which hopefully answers
all our questions. Now it is possible to specify preconditions and postconditions
for some of the routines.

Neither display nor switch_on needs a precondition, but switch_on
might be given a postcondition which makes explicit the initial state of the
clock:

 time_initialised: hour = 0 and min = 0 and sec = 0;
The routine set requires further consideration.

We may require a user to input a valid time, which is any time between
0:0:0 and 23:59:59, and we could guarantee that if preconditions are met the
time stored in the machine would be the same as the time input. We make no
commitment as to what we shall do if the time is not valid. An alternative
strategy would be to have no precondition, but simply a postcondition which
ensures that the time set on exit from the routine would be either the old time
or the new time if it were valid. We shall stick to the first strategy, although
there might be arguments for the second. The assertions for the routine set are
given in example 8.6.

 set(hh,mm,ss:INTEGER) is
 require

valid_hours: hh < 24 and hh >= 0 ;
 valid_mins : mm < 60 and mm >= 0;

 valid_secs : ss < 60 and ss >= 0;
do

 ensure
 time_has_been_set:

hour = hh and min = mm and sec = ss
end -- set

Example 8.6 Assertions for routine 'set'

We can now write the assertions for increment. The only precondition is that
time is smaller than 23:59:59. The postcondition needs, however, to ensure that
the internal state of the clock has been correctly incremented, which is not a
trivial task, as shown in 8.7.

 increment is
 require
 below_max_time :

sec < 59 or min < 59 or hour < 23

 Eiffel Object-Oriented Programming 114

 do
 ensure
 time_correctly_updated :

old sec < 59
and sec = old sec + 1

 and min = old min
 and hour = old hour
 or sec = 0

and old sec = 59
 and (min = old min +1
 and hour = old hour

 or min = 0
and old min = 59

 and hour = old hour +1)
 end -- increment

Example 8.7 Assertions for routine 'increment'

The complete class, with a class invariant is shown in example 8.8.

class CLOCK
creation

 switch_on;
feature

 hour,min,sec : INTEGER;

display is
 do
 io.put_integer(hour);

io.put_character(':');
io. put_integer(min);
io. put_character(':');
io. put_integer(sec);

end -- display
set(hh,mm,ss:INTEGER) is

 require
 valid_hours: hh < 24 and hh >= 0 ;

 valid_mins : mm < 60 and mm >= 0;
 valid_secs : ss < 60 and ss >= 0;

do
hour := hh;
min := mm;
sec := ss;

 ensure

 Assertions and Software Correctness 115

 time_has_been_set:
hour = hh and min = mm and sec = ss

end -- set
increment is

 require
 below_max_time :

sec < 59 or min < 59 or hour < 23
 do

hour := hour + (min + (sec + 1) // 60) // 60;
min := (min + (sec + 1) // 60) \\ 60;
sec := (sec + 1) \\ 60;

 ensure
 time_correctly_updated :

old sec < 59
and sec = old sec + 1

 and min = old min
 and hour = old hour
 or sec = 0

and old sec = 59
 and (min = old min +1
 and hour = old hour

 or min = 0
and old min = 59

 and hour= old hour+1)
end -- increment
switch_on is

 do
display
ensure

 time_initialised:
hour = 0 and min = 0 and sec = 0;

 end -- switch_on

invariant
 upper_limit: hour < 24 and min < 60 and sec < 60;
 lower_limit: hour >= 0 and min >= 0 and sec >= 0;

 end -- CLOCK

Example 8.8 Class CLOCK

The reader might notice that there is some overlap in the assertions, and that
the source code could be simplified by the addition of an auxiliary routine,

is_valid_time(h,m,s:INTEGER):BOOLEAN;
which could be used in the preconditions for set and in the class invariant (but
not in increment). This was not anticipated at the beginning, but the reader

 Eiffel Object-Oriented Programming 116

should see that such a routine would both simplify the source code and provide
an additional service for clients.

Next we shall consider how we would test this class, with the
precondition, postcondition and class invariant switches on. To do this requires
a root class, CLOCK_TESTER, with a creation routine, test_clock. This
routine tests class CLOCK without violating preconditions - there is no point in
doing otherwise unless we wish to test that the preconditions have been
properly defined and are triggered as expected.

class CLOCK_TESTER
creation

test_clock
feature

 test_clock is
local

 clock1 :CLOCK;
 do

!!clock1.switch_on; -- 0:0:0 expected
 clock1.increment;
 clock1.display; -- 0:0:1 expected

 clock1.increment;
 clock1.display; -- 0:0:2 expected

 clock1.set(22,59,59);
 clock1.increment;

 clock1.display; --23:0:0 expected
 clock1.set(22,0,59);

clock1.increment;
 clock1.display; --22:1:0 expected
 end -- test_clock

end -- CLOCK TESTER

Example 8.9 Harness for testing class CLOCK

The above tests have been designed to check the critical cases when the seconds
and minutes on the clock are individually or jointly set to 59. If the class
satisfies the above tests it then with confidence be submitted to a final test:
devise a routine which increments the clock until it is set to 23:59:59, and
which displays the clock at the beginning and at the end, and whenever both
minutes and seconds are set to zero. To ensure that the clock is incrementing
correctly a loop counter may be included which counts the number of times the
clock is incremented; this can also be displayed at periodic intervals, and
should finally have the value 86,399. This example is concluded later in the
chapter when loop invariants and variants are covered.

 Assertions and Software Correctness 117

Looking back over the development of class CLOCK, the reader might
well object that the assertions require a lot of work for a class with so few lines
of executable code. We know from experience, however, that the building of
software from hastily constructed components does not in the long run save
time. We should also appreciate that if we wish to offer classes for reuse, we
must be even more confident that a class works as specified, and that its correct
use is clear to both producer and potential users.

8.4 The check instruction

Whereas preconditions, postconditions and class invariants enable us to make
assertions about the state of an instance of a class on exit and on entry, check
instructions enable us to make assertions at any point in the internal code.
Check instructions may, like the previous facilities, be switched on and off.
They are particularly useful in the debugging stage, but may also be used, when
following the 'design by contract' philosophy, as assertions about the conditions
that must be satisfied before a particular instruction is executed. We might for
example be writing a routine which increments an instance of class CLOCK,
clock1. We could in this case use the check instruction as follows to show that
we are aware of the constraints on our use of CLOCK.

.......
check

can_be_incremented: clock1.sec < 59
or clock1.min < 59
or clock1.hour < 23

end -- check
clock1.increment;

If the check does not trigger an exception, but an error occurs when the call is
made to increment, we can be confident that we as users of class CLOCK have
met our side of the contract, and that the error lies with the suppliers.

The syntax of the check instruction has the following form

check
<identifier> ":" boolean_expression ";"
<identifier> ":" boolean_expression ";"
........

end

As indicated, there may be more than one assertion, and the check instruction
is delimited by an end.

8.5 Loop variant and invariant

Programmers with any experience at all soon become aware of the kinds of
errors that loops produce; few if any programmers can have gone through a

 Eiffel Object-Oriented Programming 118

career without constructing a loop which never terminates. Unfortunately using
Eiffel cannot guarantee that such a thing will never happen again, but it does at
least offer facilities which may be used to make assertions about loops, and
which can be used at run-time to debug them if there is a problem.

The use of an loop invariant and loop variant is illustrated in example
8.10. The invariant asserts that at initialisation and throughout the execution of
the loop, the local variable count will be less than or equal to p. If this facility is
switched on at run-time and the assertion is at some point untrue, then an
exception will be triggered.

exp(n:REAL, p:INTEGER):REAL is
 require

 non_neg_args: p >= 0 and n > 0
 local

count:INTEGER
 do

 from
Result := 1;

 count := 0;
 invariant
 count < p + 1;

 variant
p - count

 until
count = p

 loop
 Result := Result * n;

count := count + 1;
 end -- loop

 ensure
 -- returns n to power of p
 end -- exp

Example 8.10 Loop Invariant and Variant

The variant must be an integer expression which, at initialisation and on each
iteration of the loop, yields a non-negative value; the variant must decrease on
each iteration, which ensures that it will at some point terminate. In the above
case we intend the loop to iterate p times, which is guaranteed by the variant
chosen. If, for example, the routine is called with arguments as follows:

exp(3,4)
then on initialisation p - count will yield 4, and the assertion count < p +1
will yield true; on the next iteration the variant will yield 3 and the invariant
will remain true; at the beginning of the final iteration the invariant will

 Assertions and Software Correctness 119

remain true, and the variant will yield 1 - on exit the invariant would remain
true and the variant would be 0. If for some reason another execution were to
take place then an assertion violation would be triggered.

Having introduced loop invariants and variants the clock case study may
now be concluded (see example 8.11). A loop has been inserted in
CLOCK_TESTER. As indicated previously, a clock set to 0:0:0 will, if
incremented 86,399 times, have reached 23:59:59, which is the terminating
condition of the loop, so that the variant should yield 0 on the last iteration.
The assertion that count must always be below 86400 will likewise be true. Just
to be sure that the calculation is not an over-estimate count may be output on
the screen on exit from the loop. Also the clock ought to be displayed at the end
to ensure that it has the expected value: 23:59:59.

class CLOCK_TESTER
creation

test_clock
feature

test_clock is
local

 clock1 :CLOCK;
count:INTEGER

 do
 from

 !!clock1.switch_on;
 count := 0;

 invariant
 count < 86400;

 variant
86399 - count

 until
clock1.hour = 23

 and clock1.min = 59
and clock1.sec = 59

 loop
count := count +1;

 clock1.increment;
if clock1.sec = 0

and (clock1.min = 30
 or clock1.min = 0)

then
clock1.display;
io.putint(count)

 end -- if
 end -- loop

 clock1.display;

 Eiffel Object-Oriented Programming 120

io.new_line;
 io.put_integer(count);

end -- test_clock
end -- CLOCK TESTER

Example 8.11 Loop variant and invariant
for testing class CLOCK

As will be noticed, example 8.11 also provides for the clock and the counter to
be displayed at regular intervals throughout the test. The reader is
recommended to try this example, and also to alter the variants and invariants
to trigger an exception - e.g. alter the invariant so that it reads count < 86399.

The following section may be omitted on a first reading.

8.6 Exception handling

An exception is an unexpected hardware or software fault which may result in
system failure. If an exception occurs - for example an attempt to open a file
fails - then usually the system fails too, and important data may be lost. In
safety critical systems, failure may of course be quite literally a life and death
matter, and provision has to be made to deal with failure in a way which
minimises the consequences.

Few languages have in the past offered support for handling exceptions.
One language that does is Ada, which allows a programmer to provide an
exception handler for each software unit. The Eiffel mechanisms for exception
handling are defined at routine level. The Eiffel approach to exception handling
may be summarised as follows:

i. a routine either fails or succeeds
ii. if a routine fails it must not pretend that it has succeeded
iii. it should either try again or report failure to the client
iv. if it tries again and still fails then it should as far as possible leave
 the environment stable

 v. failure is reported upwards through the chain of routine calls until
 either the error is dealt with or - if it gets to the root - it causes
 system failure.

The mechanisms that the Eiffel language provides are a rescue clause and a
retry instruction. The rescue clause, if used, must be inserted at the end of a
routine, after the postcondition:

<routine_name> [formal argument list] [":" <result-type>] is
[preconditions]

 [local declarations]
 do
 compound instruction
 [postconditions]

 Assertions and Software Correctness 121

[rescue clause]
 end
The rescue clause consists of

rescue
compound instruction

It is executed only if an exception occurs in the body of the routine. It cannot
therefore be used to deal with violations of preconditions. Its main purpose is to
return the current object to a stable state so that invariants are satisfied. It may
also attempt to re-execute the body of the routine. This may be accomplished by
a retry instruction. This instruction, which consists simply of the reserved word
retry, may be used only in a rescue clause.

The use of retry is illustrated in class STATIC_QUEUE, which is
implemented using an ARRAY (example 8.12). The front element is stored in
location 1, and last indicates the rear of the queue, as shown in 8. 4.

15

20

3

4

last 15

5

6

13

9

100

32

15 2

first1

2

figure 8.4

When an item is removed then all the elements must be moved up and last
decremented, when an item is added then last is incremented and the new item
inserted at the location stored in last (in the above case the next item would be
added to location 16). When an element is added to a full array, an exception
will occur. This is dealt with by resizing the array as shown in the rescue clause
of add.

class STATIC_QUEUE;
 creation

 make;
feature { }

list:ARRAY[INTEGER];
size : INTEGER;

feature
is_empty : BOOLEAN is
do

 Eiffel Object-Oriented Programming 122

Result := size = 0
end -- empty
add(element:INTEGER) is

local
has_tried:BOOLEAN;

do
 size := size + 1;
 list.put(element,size)
 ensure

 is_inserted: list.item(size) = element;
 rescue

 list.resize(1,list.upper+10);
 old size := size -1;

 if not has_tried
then has_tried := true;

retry;
end -- if

end -- add
front: INTEGER is

require
not_empty : not empty

do
 Result := list.item(1);

end -- front
rear: INTEGER is

require
not_empty : not empty

do
Result := list.item(size);

end -- rear
remove is

require
not_empty : not empty

do
list.remove(1); -- available in Eiffel/S but not ISE Eiffel

-- use q_remove ; see example 8.12
size := size -1

end -- remove
make is
do

!!list.make(1,100);
ensure

empty: is_empty
end -- make

end -- QUEUE

 Assertions and Software Correctness 123

Example 8.12 Use of rescue and retry

In example 8.12 a rescue clause is used to provide automatic resizing
(allocating another 10 locations) if an exception is triggered when a client tries
to add an element to the queue. It should be noted that the attribute last, which
points to the rear, is in this case set to the value it had on entry to the routine.
The routine is then asked to try to execute its body.

As pointed out in the comment in the source code, a remove for class
ARRAY is available in Eiffel/S but not ISE Eiffel. In practice this does not
matter, since the exception handling may be tested without removing a single
element from the queue. ISE users may either comment out the call, not
implement a remove routine in STATIC_QUEUE, or write their own substitute
for the Eiffel/S remove, which moves every element one place to the left.

To test example 8.12, the reader should write a root class which is a
client of STATIC_QUEUE, and should insert in it a test routine which triggers
the exception - for example a loop which iterates 1000 times, and on each
iteration adds its own index to the queue - an unlikely scenario, but one which
allows the programmer to experiment with exception handling.

It should be emphasised that other and arguably better strategies could
have been chosen to implement a static queue, including

1. a precondition which required the client not to add an item if the
queue was full (this would have required an is_full routine to be
supplied);
2. the use of force instead of put, which would have automatically
resized the array whenever required;

 Had the first strategy been chosen then the rescue clause would not have been
appropriate: a rescue clause cannot deal with the failure to meet a precondition;
it deals with failure in the body of a routine.

Finally it should be pointed out that other facilities for exception
handling are available in the class library. Readers who wish to pursue this
should look at class EXCEPTIONS in the class library.

The following two sections deal briefly with facilities available to detect
the causes of error in an Eiffel application.

8.7The debug instruction

The debug instruction is an instruction designed, as the name suggests, for
tracing errors. It allows us to insert instructions in a piece of code during
debugging, and to switch them off when they are no longer required. It is
possible to switch all debugging on or off, or to switch individual debug
statements or sets of statements on or off. This is done either by specifying at
run time which classes in a system are to be switched on, or by appending a key

 Eiffel Object-Oriented Programming 124

or keys to the keyword debug, which allows the system to execute selectively a
specified debug or set of debug instructions.

The debug instruction has the following form:
debug

instruction
instruction
...................

end
or with a debug key:

debug ("INCREMENT")
instruction
instruction
...................

end
In the second case, the keyword debug is followed by a string; this allows
debug instructions to be turned on and off more selectively. If the reader wishes
to use the debug facilities then alterations may have to be made to the ACE file.
The ACE file should include entries such as the following to indicate whether
debug should be turned on, off, on selectively, or whether a debug key should be
turned on.

debug(no)
debug(yes)
debug(yes):CLOCK, CLOCK_TESTER
debug("INCREMENT")

It should be made clear that debug instructions are designed for
debugging and not for testing classes. The two terms are often confused:
testing is a process designed to establish the existence of errors; debugging is
the process of locating errors and correcting the code which is causing them.
Sometimes the source of an error can be located simply through code
inspection; quite often the violation of an assertion will give the programmer a
good clue as to where the error is occurring. If the exact source of an error
cannot be detected from source code inspection and from assertion violations,
then the use of output statements to check key attributes is a technique which
should be used. So, for example, to return to class CLOCK, if at some point the
clock appears to be updating incorrectly, the debug instruction might at one or
more points be used to view the attributes of CLOCK:

io.put_integer(hour);
io. put_integer(min);
io. put_integer(sec);

It is also sometimes useful to make a program execute step by step; an
instruction sequence such as
 io.put_string("Press key to continue");

io.read_character;
will accomplish this.

8.8 Trace

 Assertions and Software Correctness 125

A trace facility is provided as part of the run-time support for Eiffel. This may
be used during debugging to trace the flow of control in a system; it will help a
programmer to ensure that routines are being called in the order expected. The
trace facility may be switched on for individual classes, for all classes, and for
none. If switched on it generates information about calls to, and returns from,
routines of specified classes. Like the debug instruction this can be very useful
in tracing the causes of error. Readers who wish to use this facility are advised
to switch it on only for a limited number of classes.

(In SmallEiffel this is done by the following: trace_switch := true and
trace_switch := false; to use the trace facility, the compiler must be called with
the trace option: compile -trace).

If this is not done it will trace the flow of execution through all the low level
classes; this will produce much unnecessary information, and the large number
of i/o operations generated can also result in very slow execution speeds.

Exercises

1. a) Implement and test class BANK_ACCOUNT;
b) write a precondition for change_id to ensure that the current id and the new
id are not the same;
c) write a transformer, change_credit_limit(new_limit:REAL); supply a suitable
precondition to ensure that class invariants are not violated by new_limit;

2.a) Implement classes CLOCK and CLOCK_TESTER; implement the
function, is_valid_time, and use in assertions as appropriate;
b) make a slight alteration to the body of increment, and test with the
postconditions switched on;
c) make changes to CLOCK_TESTER to trigger an exception as suggested in
section 8.5.

3. a) Write an invariant and variant for the loop shown in example 5.6.
b) Examine the loop in example 4.3. Why is there no point in using a variant
and invariant in this case?

4. A stack is a last in first out data structure; the function, top, returns the top
item on the stack, but leaves the stack unaltered; push(i:ANY) places i on the
stack, so that it becomes the new top; pop removes the item on the top of the
stack; pop and top must never be used when the stack is empty.

Write a suitable set of preconditions and postconditions for
top:ANY;
pop;
push(i:ANY);

126

9. Inheritance

This chapter introduces single inheritance; it also covers the concept of
polymorphism, the rules for conformance in Eiffel, and the related topic of
reverse assignment. It concludes with a discussion of when inheritance is and is
not appropriate.

9.1 Inheritance for specialisation

The most important use of inheritance is for specialisation. The use of
inheritance often results in the development of classes linked in tree-like
structures, with an abstract root, and more specialised descendants. As an
example we could model the people in a typical university, as in figure 9.1.

Person

Academic Administrative

Employee
Student

Part_time Full_timeAncilliary

figure 9.1

At the top of thehierarchy is as general a class as we can model: Person. An
employee is a specialisation of Person, and a student also is a specialisation of
Person. We have in the above diagram continued our specialisation to the next
level: an academic is a specialisation of Employee, and a Full_time is a
specialisation of Student. The specialisation relationship is often described as
an is_a relationship; so if we look at the above hierarchy we can make the
following observations among others:

a Full_time is_a Student
a Full_time is_a Person
an Administrative is_a Employee
an Employee is_a Person
an Ancilliary is_a Person

We would also say that class ACADEMIC is a descendant of class
EMPLOYEE and through EMPLOYEE is also a descendant of class PERSON.
Class EMPLOYEE is a descendant of PERSON only.

We may now consider the kinds of attribute that might be required by
each of the classes in the above hierarchy. Clearly we do not need to model all

 Inheritance 127

127

attributes about people in the university - for example, height, weight, even hair
colour change over time, and are, as far as the author is aware, of little interest
to university authorities. There, are however, certain attributes which are
common to all people in the university, and which an information system would
need to contain: name, sex, date_of_birth, home_address, next_of_kin, and
telephone_number, are fairly obvious attributes.

At the next level we have decided to group the people in the University
into two categories: employees and students. Employees will have common
attributes of interest to the university: employee_number, start_date, salary,
bank_account (this assumes that all the employees are paid directly into a bank
account).

Employees have been further subdivided into three kinds. The first two
should be self explanatory. In the third category are grouped together various
kinds of function necessary in a modern university: catering, security,
buildings, technical support. It should be noted that we have not created a
separate class for each. This is unnecessary: we can indicate their actual
function by an attribute. Similarly we have not provided a class for each
academic department. Our university may have an academic structure such as
that depicted in figure 9.2.

University

Science

 Chemistry Physics

Humanities

Philosophy Literature Politics Economics

Social Sciences

figure 9.2

in which academic departments are grouped into faculties such as humanities,
social sciences and so on. But we should not confuse the two hierarchies. Each
academic in the university will be attached to a department, and each academic
in our hierarchy will have an attribute indicating his/her department. We might
if we were building an information system for the University wish to create a
class DEPARTMENT, but it would have no place within our hierarchy. The
relationship between an academic and a department is a has_a relationship:
class ACADEMIC is a client of class DEPARTMENT.

Students have been divided into two categories - perhaps a less obvious
dividing line in some universities, those who attend full-time, and those who
are on part-time courses. All students will have common attributes: course,
year, commencement_date. Full-time students will have additional attributes -
term_time_address, term_time_phone, funding_body. Part-time students will

 Eiffel Object-Oriented Programming 128

typically, in the UK at least, have an employer, an address and a phone-number
at their place of work.

In the figure 9.3 certain attributes have been specified for each class.

EMPLOYEE

salary

bank_Account

date_started

ACADEMIC

department

qualifications

title

function

location

ANCILLIARYADMINISTRATIVE

grade

department

STUDENT

course
date_started
year

FULL_TIME

term_address

term_phone

funding_body

Part_time

employer

day_address

day_phone

PART_TIME

date_of_birth
sex
address
phone

PERSON

next_of_kin

name

employee_nmbr

id

figure 9.3

It should be emphasised that any descendant automatically inherits the
attributes of all its ancestors. We can illustrate this by looking at class
ANCILLIARY. In addition to the attributes function and location, which are
special to ANCILLIARY, any instance of this class would inherit the attributes,
salary, bank_account, date_started, and employee_nmbr, from EMPLOYEE,
and would inherit name, date_of_birth, address, sex,and next_of_kin from class
PERSON. Likewise class PART_TIME would inherit all the attributes from
class PERSON, and would in addition inherit id, course, year,and date_started
from class STUDENT, and would also have the attributes employer,
day_address, and day_phone.

The functionality or services of each class have not been modelled; but
the rules for inheritance would apply to them in the same way as the data. If
therefore class PERSON has the following routine

make(nme:STRING;date_of_birth:INTEGER;gender:CHARACTER)

 Inheritance 129

129

then that routine will be available to all its descendants. The next section
continues this example, and shows how the inheritance relationship is declared
in Eiffel.

9.2 Single inheritance in Eiffel

The following example shows how class ADMINISTRATIVE would be written
in EIFFEL. This class inherits all the features of EMPLOYEE, and through
EMPLOYEE, all the features of PERSON.

class ADMINISTRATIVE
inherit

EMPLOYEE
creation

make
feature

grade:INTEGER;
department:STRING;
change_grade(g:INTEGER) is
do

grade := g
end -- change_grade
change_dept(dept:STRING) is
do

department := d
end -- change_dept

end -- ADMINISTRATIVE

Example 9.1 Inheritance in Eiffel

It may be noted that a creation routine has been declared, and that, make which
has been inherited from PERSON, has been chosen. To create an instance of
class ADMINISTRATIVE it would, therefore, be necessary to supply a name, a
date of birth, and the person's sex, as shown in example 9.2.

class INFORMATION_SYS
creation

start
feature

admin_1,admin_2:ADMINISTRATIVE;
start is
do

!!admin_1.make("Long Tran",44,'m');
!!admin_2.make("Sai Ming Lee", 28,'m');

 Eiffel Object-Oriented Programming 130

!!admin_1.change_dept("Law");
!!admin_2.change_dept("Registry");
!!admin_1.change_grade(2);
!!admin_2.change_grade(3);
io.put_string(admin_1.name);
io.put_string(admin_1.department)
..................

end -- start
end -- INFORMATION_SYS

Example 9.2 A client of class ADMINISTRATIVE

This example cannot of course be executed without implementing classes
PERSON and EMPLOYEE. This is left to the reader (see the exercises at the
end of the chapter).

Finally this brief introduction to single inheritance in Eiffel should be
concluded with an update to the syntax of an Eiffel class, showing the
inheritance part.

class <class_name>
[inherit
 type]
[creation

<routine_name>]
feature

{routines | attributes }
end

It should be pointed out that this is still incomplete - and in particular it takes
no account of feature adaptation and multiple inheritance (chapters 11,13).

9.3 Inheriting for reuse

This section returns to class CLOCK (see chapter 8) to illustrate a common
occurrence - the need to enhance the functionality of an existing class. In such a
case there are two alternatives - either the existing class is altered, or a new
descendant class is developed to allow existing attributes and functionality to be
re-used. We shall assume that class CLOCK is now stable, and is being used
by clients who are quite happy with it. So in this situation it is sensible to
develop a new class, DELUXE_CLOCK, as a descendant of CLOCK.

Class DELUXE_CLOCK will have the following added functionality,
but no new attributes.

add_seconds -- a transformer routine
-- adds s seconds to target

 Inheritance 131

131

-- adding s must not advance time beyond
23:59:59

add_clock -- a constructor routine
-- returns a new clock with time stored that of target +

clock c
-- no side effects: target and c are unchanged
-- result of adding must not advance time beyond

23:59:59

time_in_seconds -- accessor routine
-- returns time stored in seconds

smaller_than -- compares clock c with target
-- true if the time stored in target is less than

 that held in c

It may be noted that a smaller_than routine has been specified, but an equality
routine has not. It should be remembered that class CLOCK inherits from
ANY, and that we can use the is_equal routine inherited from GENERAL. The
reader should recall our discussion of this in chapter 6. In this case it is
perfectly safe to use is_equal since the attributes are all type INTEGER. If class
CLOCK had any reference types then it would be necessary to use
is_deep_equal.

In outline the new class will be as presented in example 9.3. The
inherited routine, switch_on, has been selected as the creation routine. A
descendant class does not automatically inherit a creation routine. Often a
descendant has additional attributes, so that further initialisation may be
required, and a new creation routine defined for that purpose. In this case there
are no further attributes, and it makes sense to reuse the creation routine
already specified.

The class invariant defined in class CLOCK automatically applies to
class DELUXE_CLOCK; an additional invariant may be added, but the
inherited invariant cannot be weakened. Any new invariant will therefore
simply be added to inherited invariants.

 class DELUXE_CLOCK
 inherit
 CLOCK

 creation
 switch_on
 feature

 Eiffel Object-Oriented Programming 132

time_in_seconds:INTEGER;
 -- returns time in seconds

add_seconds(s:INTEGER);
 require

time_in_seconds + s < 24*60*60
 ensure

correct_time:
time_in_seconds= s + old time_in_seconds

 infix "+" , add_clock(c:DELUXE_CLOCK)
:DELUXE_CLOCK;

 require
 not_void: c/= void;

time_in_seconds + c.time_in_seconds < 24*60*60
 ensure

Result /= current;
time_in_seconds + c.time_in_seconds

 = Result.time_in_seconds
 infix "<" , smaller_than(c:DELUXE_CLOCK)

:BOOLEAN;
 require

c /= void
 end DELUXE_CLOCK

Example 9.3 Class DELUXE_CLOCK in outline

The use of the infix should be noted. It is permissible to give a routine
two names, as in the case of smaller_than and add_clock. The infix allows us to
use the "<" and "+" with two operands of class DELUXE_CLOCK:

if a_deluxe_clock < another_deluxe_clock
then ...

and
a_deluxe_clock := a_deluxe_clock + another_deluxe_clock;

We may now implement each routine, as shown in example 9.4.

class DELUXE_CLOCK
 inherit
 CLOCK

 creation
 switch_on
 feature

time_in_seconds:INTEGER is
do

 Inheritance 133

133

Result := hour * 3600 + min * 60 + sec
 end -- time_in_seconds

add_seconds(s:INTEGER) is
 require

time_in_seconds + s < 24*60*60
 do

hour := hour + (min + (sec + s)// 60) // 60;
min := (min + (sec + s) // 60) \\ 60;
sec := (sec + s) \\ 60;
ensure

correct_time:
time_in_seconds

= s + old time_in_seconds
end -- add_seconds
infix "+", add_clock(c:DELUXE_CLOCK)

 :DELUXE_CLOCK; is
 require

 not_void: c/= void;
time_in_seconds + c.time_in_seconds

 < 24*60*60
do

Result := clone(Current);
Result.add_seconds(time_in_seconds(c));

 ensure
Result /= Current;
time_in_seconds + c.time_in_seconds

 = Result.time_in_seconds
end -- add_clock
infix "<" ,smaller_than(c: DELUXE_CLOCK)

 :BOOLEAN is
require c /= void

do
Result := time_in_seconds < c.time_in_seconds

end -- smaller_than
end -- DELUXE_CLOCK

Example 9.4 Class DELUXE_CLOCK

The reader should note the coding of the routine add_clock in which the
current object has been cloned, and time-in_seconds, and add_seconds, already
defined in the class, have been used. This provides a neat solution to the
problem, and avoids unnecessary duplication of code.
 Instances of class DELUXE_CLOCK now have the following set of
features: hour, min, sec, display, increment, set, switch_on, time_in_seconds,
add_seconds, add_clock , smaller_than.

 Eiffel Object-Oriented Programming 134

It should be emphasised that class CLOCK has been extended through
inheritance, it has not been altered. None of the new features may be used with
entities of class CLOCK. It should be added that the decision to create
DELUXE_CLOCK was not one that would be taken were we designing class
CLOCK from scratch again. It would indeed make sense to incorporate all the
facilities defined in class DELUXE_CLOCK in class CLOCK. As was stated
out the outset, it is not a good idea to replace classes that are currently in use.
Inheritance allows us to reuse what has been done before without any danger of
affecting those who are already using a class.

It may also be pointed out that designing a class for subsequent reuse is
difficult to achieve. As object-oriented developers we should not expect to be
able to get the best solution first time. The conventional engineering paradigm
which envisages software development as an ordered sequence - specification,
followed by design, then by implementation - was always more an aspiration
than an accurate model of how software is actually constructed, and it will not
enable us to produce systems that are easy to maintain, let alone to develop
reusable code.

9.4 Polymorphism

The concept of polymorphism causes a great deal of unnecessary confusion, and
it is probably true to say that it is possible to learn object oriented programming
without a clear idea of what people mean when they use the term. The reason
for the confusion is that there are at least three possible contexts in which the
term is used.

Firstly, it is often associated with overloading - allowing the same name
to be used for different features.

Secondly, it is used in the context of generic data structures - sometimes
known as 'parametric polymorphism', which is explored further in chapter 10.

Thirdly, it is used in the context of inheritance in a typed language. It is
this context which we shall now explore.

Inheritance introduces the possibility that an entity may, at some time
during execution, be attached to an object of a different type from the entity's
type. We must, therefore, distinguish between the static type of an entity,
which is that known at compile time, and the dynamic type, which is the type of
the object to which an entity is attached at a given instant during run-time.

The ability to have more than one type may be referred to as inheritance
polymorphism. Such polymorphism is a fundamental feature of object-oriented
software development, because it allows algorithms to be defined at an abstract
level, for many types, and to be adapted lower down the class hierarchy if
necessary. In dynamically bound languages such as Smalltalk, all entities are
potentially polymorphic, and there is no restriction as to the kind of object to
which an entity may be attached during execution. In a typed language such as
Eiffel, polymorphism is possible only within the framework of inheritance. At
one extreme, an entity whose static class was ANY, could be attached to an
object of any class within the Eiffel library, or indeed to an object of any

 Inheritance 135

135

programmer-defined class. Normally however, the conformance rules (see next
section) greatly restrict the number of possible types to which an entity may be
attached.

9. 5 Conformance

The conformance rules govern assignment, the allowed types of actual
arguments, and attribute and routine redefinition. The issues involved may be
stated as questions

assignment:
- may an object of type T1 be attached to an object of type T2?

actual arguments:
- may an actual argument of type T1 substitute a formal argument
of type T2 ?

 attribute redefinition:
- may an attribute of type T2 be redefined as type T1

routine redefinition:
- may a formal argument of type T2 be replaced by one of type T1?
- may a result-type of type T2 be replaced by one of type T1?

Eiffel allows each of the above, provided that T1 conforms to T2. The rules for
conformance in Eiffel may be summarised as follows:

T1 conforms to T2
if they are the same or if T1 is a descendant of T2

This may be illustrated by returning to the examples developed earlier in the
chapter: inituitively we would say that an EMPLOYEE is a PERSON, but we
would not say that a PERSON is an EMPLOYEE; likewise, a
DELUXE_CLOCK is a CLOCK, but a CLOCK is not a DELUXE_CLOCK.
This is precisely how conformance works in Eiffel: EMPLOYEE conforms to
PERSON and DELUXE_CLOCK conforms to CLOCK.

The conformance rules allow us therefore to assign an entity of a class
DELUXE_CLOCK to an entity of class CLOCK. So assuming the following
declarations:

clock1:CLOCK;
del_clock1: DELUXE_CLOCK;

the assignment clock1 := del_clock1 would be allowable, but del_clock1:=
clock1 would not be allowed.

The same rule applies for arguments to a routine. So for example had
the routine add_clock, been specified with a formal argument of type CLOCK,
we could still have used an actual argument of type DELUXE_CLOCK.
Again, the reverse is not true: we cannot use an actual argument of type
CLOCK with the add_clock routine as it is defined in example 9.4 (further
discussion of redefintion will be found in chapter 11).

9.6 Reverse assignment attempt

 Eiffel Object-Oriented Programming 136

Section 9.5 has indicated that an entity of type T1 may only be attached to an
entity of type T2 if its class type conforms to that of the target. This can cause
problems. Object-oriented languages, as we have seen. allow an entity to be
attached at run-time to an object of a different type from that of its static type.
Nevertheless, given the following declarations

clock1:CLOCK;
del_clock1, del_clock2: DELUXE_CLOCK;

the rules of conformance would not allow us to make the second of the
following sequence of assignments

clock1 := del_clock1;
del_clock2 := clock1;

It may be obvious that after the first instruction clock1 is attached to a
DELUXE_CLOCK, but the compiler makes only static checks, and does not
attempt to trace the history of attachments to work out the type to which an
entity would be attached at a given time. In any case it would not be possible to
do this in every situation.

To be able to do what we wish, we have in effect to override the rules of
conformance. To achieve this Eiffel provides the reverse assignment attempt.
Therefore if we have a situation in which we believe that clock1 may at a
certain point be attached to a DELUXE_CLOCK, we could make an attempt to
assign clock1 to del_clock2 as follows:

del_clock2 ?= clock1;
The syntax is similar to assignment, but the ? indicates that the compiler cannot
be sure that the attempt will succeed, and so must make provision in case it
does not.

If at run-time the attempt succeeded - i.e. if clock1 was attached to an
object whose type conformed to DELUXE_CLOCK, then the assignment would
take place, and del_clock2 would be attached to the same object as clock1 as
depicted below. Attachments of clock and deluxe_clock2 before and after the
reverse assignment attempt, del_clock2 ?= clock1 are shown in figures 9.4 and
9.5.

clock1
deluxe

10:20:24

del_clock2 deluxe
0:15:12

figure 9.4

clock1

del_clock2

deluxe
10:20:24

 Inheritance 137

137

figure 9.5

A failed attempt is shown in figures 9.6 and 9.7.

clock1
clock

10:20:24

del_clock2 deluxe
0:15:12

figure 9.6

clock1
clock

10:20:24

del_clock2 Void

figure 9.7

Sometimes, we do not wish to make an assignment, but merely to check on the
type of an object. In this case the routine

 conforms_to (other like Current) :BOOLEAN
 from class GENERAL may be used to test if the dynamic type of the target
conforms to the dynamic type of other. So for example the expression

clock1.conforms_to (del_clock1)
would yield true only if clock1 was attached to a DELUXE_CLOCK, or a
descendant of DELUXE_CLOCK.

Occasionally, we have a situation in which an entity could potentially be
attached to an object of many possible types, in which case there is no easy
solution using any of the standard Eiffel facilities. If, for example, an entity is
of CLASS_A, and CLASS_A has six descendant classes:CLASS_B, CLASS_C,
CLASS_D, CLASS_E, CLASS_F, and CLASS_G, then it would require a
fairly complex and laborious piece of coding to ascertain the actual type of the
argument passed in at run-time. Example 9.5 which provides a routine

find_class(a:CLASS_A);
illustrates how this could be done. The reader should appreciate that according
to the rules of conformance, the actual argument may be of CLASS_A or any
descendant of CLASS_A.

find_class(a:CLASS_A) is
local

b:CLASS_B; c:CLASS_C;
d:CLASS_D; e:CLASS_E;

 f:CLASS_F; g:CLASS_G;

 Eiffel Object-Oriented Programming 138

do
b ?= a;

 if b = Void
 then c ?= a

 if c = void
 then d ?= a

 if d = Void
 then e? = a

 if e = Void
 then f ?= a

 if f = Void
 then g ?= a
 if g= Void
 then

-- must be type A
 else

 -- is type G
 end -- if

 else -- is type F
 end -- if
 else -- is type E
 end -- if

 else -- is type D
 end -- if

 else -- is type C
 end -- if
 else -- is type B
 end -- if

 end -- find_class

Example 9.5 Complex reverse assignment attempt

As an alternative ISE Eiffel provides a routine in class INTERNAL ,
class_name(object:ANY):STRING

which returns the class name of an object. A class which inherited from
INTERNAL could therefore use this routine to determine whether two classes
were the same:

if class_name(clock1).is_equal(class_name(del_clock1))
 then ...

Happily the cases when we need to do anything such as that shown in example
9.5 are relatively rare.

9.7 When to inherit

 Inheritance 139

139

Inheritance is a powerful and very useful mechanism; as a result many
students when they first come across it tend to over use it. There are clearly
different viewpoints as to the proper use of inheritance. The author tends to the
view that inheritance should be a last resort. Too often, perhaps, it is the first
resort, with the result that there is a danger that inheritance will become the
GO TO of the 1990's. There is also some current concern that indisciplined use
of inheritance makes the testing of new classes very difficult.

 It ought to be emphasised that inheritance is not the defining feature of
object-oriented software development. In his classic study of object-oriented
software construction, Bertrand Meyer defined seven steps to object oriented
happiness, of which single inheritance was step five (Meyer 1988). Some of the
preceding steps are more important to the design of object-oriented systems -
and it is particularly important that we do not lose sight of the fundamental -
that systems must be modularised around data structures rather than functions.

Of the examples in this chapter, the PERSON, EMPLOYEE hierarchy
illustrates the use of inheritance in designing a set of related classes from
scratch. CLOCK and DELUXE_CLOCK, is an example of inheritance for
reuse: it would have been better to have redesigned CLOCK from scratch with
the additional features; the decision to inherit in this case was taken because of
the assumption that the class was currently being used, and it was safer not to
alter it. At some point a decision has to be made that a class may not be altered
any more: Meyer refers to this as the open-closed principle (Meyer 1988).

We may now introduce a further example, class SENSOR_READINGS
which stores readings from a sensor at timed intervals during the day, and is
required to perform calculations on these using mathematical functions such as
log, exp, sqrt. Since it is required to store more than one reading, we need
access to the functionality of a linear data structure. Having chosen the data
structure from the library, (we have selected ARRAY), we now must chose
whether to inherit ARRAY, as in example 9.6, or to make SENSOR-
READINGS a client as shown in example 9.7.

class SENSOR_READINGS
 inherit ARRAY[REAL]
 feature

count:INTEGER;
 calc_result:REAL is
 do

 end -- calc_result
.........

end -- SENSOR_READINGS

Example 9.6 Inheriting class ARRAY

 Eiffel Object-Oriented Programming 140

class SENSOR_READINGS
 feature
 store: ARRAY[REAL]

.........
end -- SENSOR_READINGS

Example 9.7 Client of class ARRAY

In this case the use of inheritance seems better to the author for the
following reasons: SENSOR_READINGS is a collection of data; the is_a
relationship seems to make sense. There is an added reason. A client will need
to put information into its instance of data readings. SENSOR_READINGS
should logically act as a passive repository of data, not an active collector of
data, otherwise it needs a complete reconsideration. A client would presumably
have a feature such as:

readings:SENSOR_READINGS
If a client class is to put data in readings, and perhaps retrieve it, then it seems
preferable for a client to be writing shorter call such as

readings.put(some_reading,reading_number)
as opposed to the kind of chain that would be needed for the user to access the
array:

readings.store.put(some_reading,reading_number)
If on the other hand we were going to define special transfomer and

accessor routines for SENSOR_READINGS, then there is good justification for
taking the second path, of declaring a client instead of inheriting. In this case
we would be able to hide the implementation from the client, and not require
the client to know anything about arrays at all.

class SENSOR_READINGS
 feature {NONE}
 store: ARRAY[REAL]

feature
 count:INTEGER;

calc_result :REAL is
 do

......
 end -- calc_result

insert_at(r:REAL; index:INTEGER) is
do

store.put(r,index);
end -- insert
append(r:REAL) is
do

store.put(r, count+1);

 Inheritance 141

141

count := count +1;
end -- append
retrieve(index:INTEGER):REAL is
do

Result := store.item(index);
end -- retrieve;

end -- SENSOR_READINGS

Example 9.8 Client of ARRAY, with own insertion
 and retrieval routines

The arguments for inheriting or becoming a client of ARRAY seem in this case
to be finely balanced, although others may disagree. The client solution with
the new insertion and retrieval routines requires slightly more work from the
developer, but produces a class which seems easier and safer for a client of
SENSOR-READINGS to use. As an alternative, it would be possible to inherit
ARRAY and to use the re-export features of the language to hide array
operations from a client (see chapter 11).
 When we have decided whether to inherit ARRAY or not, and then
begin writing the calculation routine, we find that the functions required are
defined in class SINGLE_MATH in the library. Again there is a choice of the
inheritance or client relationship. The most common solution appears to be to
use inheritance. This is a different category of inheritance from those
previously encountered. It is a case of using inheritance simply to acquire
functionality. Clearly in this example SENSOR_READINGS would fail the is-a
test, as would almost any other class one may think of, except for the case,
similar to DELUXE_CLOCK, when we wish to create a new class which
extends the current collection of maths routines.

As an alternative, we could declare an attribute,
fn: SINGLE_MATH

which would allow the functions defined in SINGLE_MATH to be accessed by
prefixing fn:

 fn.log
fn.cos

and so on. One disadvantage with this is the need to use a creation instruction
before any of the functions may be accessed, unless of course a once routine
which returned a shared copy of fn was defined somewhere in the class
hierarchy.

It may be seen that the question of when to inherit, as opposed to
becoming a client of a class, is often not as clear-cut as in the case of the
example with which the chapter began. It is worth re-emphasising the points
made earlier in this section of the chapter:

 Eiffel Object-Oriented Programming 142

The purpose of object-oriented software development is not to
devise as many ways as possible of using inheritance.

The purpose is to develop quality software, which is easy to
understand and maintain.

Over-use of inheritance can add to the complexity of software, and
can incidentally make testing much more difficult.

Inheritance is an essential technique, but it should be used with
caution.

Exercises

1. This chapter has introduced concepts of polymorphism, conformance and
reverse assignment. Make notes on each of these.

 2. a) draw a diagram to represent the following: CLASS_H inherits from
CLASS_D, CLASS_D and CLASS_E inherit from CLASS_B, CLASS_B and
CLASS_C inherit from CLASS_A; CLASS_F and CLASS_E inherit from
CLASS_C.
 b) given the following attributes:

a:CLASS_A; b:CLASS_B; c:CLASS_C; ...
and so on, which of the following are legal assignments?
a := d; c := g; f :=c; d := b; d := h; d:= a; e := f

 c) given a routine, x(r:CLASS_B), which of the following actual arguments
would be valid?

a e h b f

2. The following exercises involve classes PERSON, EMPLOYEE,
ACADEMIC and AMINISTRATIVE, which should first be implemented and
tested: select appropriate types for the attributes, and provide a transformer for
each; write a root class, e.g. INFORMATION_SYS, for testing each class as it
is developed.

a) Write a routine in the root class which enables data for instances of
ACADEMIC and ADMINISTRATIVE to be entered from the keyboard;

b) write a class, STAFF_LIST, which inherits from ARRAY; make the
root class a client of STAFF_LIST, and add the employees entered from the
keyboard to a STAFF_LIST; (Hint: STAFF_LIST is an array of EMPLOYEE)

c) write a display routine in EMPLOYEE, and write a display routine in
STAFF_LIST; the former needs to output two or three attributes only; the latter
should be a standard array traversal, which calls the display defined in
employee; test this routine from the root class, e.g. given the declaration, staff :
STAFF_LIST, it may be tested by the call, staff.display;

 Inheritance 143

143

d) in class STAFF_LIST write constructor routines, which return arrays
of staff as suggested by the routine name;

academic_list: STAFF_LIST
administrative_list:STAFF_LIST

each of the above should traverse the array of EMPLOYEE, and return the
appropriate employees found in the array. (Hint: use reverse assignment);
consider whether clone or deep_clone should be used to put elements in the
new array; test these routines (Hint - display may be used)

e) both routines in question 2d) exhibit duplication of code; write a
single routine to do this task. (Hint: use an argument, which will enable the
type required to be determined dynamically).

144

10. Generic Classes

The term genericity is clearly related to the word "general", and when we talk
of genericity in the context of software construction we are talking about the
capacity to produce components which have a general use. Such components
are essential if we are to promote the reuse of code through the development of
class libraries.

The development of the technique of genericity has been in response to
the need in typed languages to provide container classes or data structures
which may be used for any type.

The idea of a generic class was first introduced in chapter 7 when it was
shown how class ARRAY could be used to store integers, reals, strings, or
indeed any class of object. This chapter introduces another generic class,
LINKED_LIST, and shows how programmers may develop their own generic
classes. The chapter begins by introducing container classes and the concept of
genericity. This is followed by a brief introduction to LINKED_LIST,and then
a brief section on alternatives to genericity, which may be of interest to those
with experience of other object-oriented languages. The rest of the chapter
shows how reusable classes may be developed in Eiffel using unconstrained and
constrained genericity.

10.1 Container classes

Any object oriented language should include an extensive class library of data
structures such as sets, stacks, lists, trees, queues, ordered lists, tables and so
on. Such classes are often referred to as container classes. To be useful, and to
meet the goal of reusability, container classes must be as general purpose as
possible, and must therefore, be able to allow the storage of objects of any type.

For an untyped language, such as Smalltalk, this was never a problem.
The Smalltalk class library from its inception provided an impressive number
of container classes which could be used to store any object. The problems in
managing structures which may contain any kind of object are in Smalltalk left
to the programmer, and the consequences of programmer error may not appear
until execution-time.

For typed languages the 'container problem', as it has sometimes been
known, has presented the challenge of how to combine reusability and
generality with safety and static type checking. The solution, which Eiffel was
the first object-oriented language to adopt, is referred to as parametric
polymorphism or more commonly, genericity. This solution allows us to
develop class templates. The decision as to the class type or types to be
contained in a generic data structure is postponed until compile time, when the
programmer who is using a generic class is required to supply the name or
names of the types to be used.

 Generic Classes 145

For languages which do not support parameterized classes the best
solution is to define a base element-class, preferably an abstract class, and make
all actual element types inherit from it, as shown in section 10.3.

10.2 A generic class: LINKED_LIST

A generic class is a template from which actual data structures may be derived.
So if we look at class LINKED_LIST in the EiffelBase library, we will find that
it is declared as

class LINKED_LIST [G]
The [G] is known as a formal generic parameter. G is now the most widely

used formal parameter, but the rules of Eiffel allow any identifier. By
convention a single letter is used, which is likely to avoid the use of a class
name. The following declarations would not be allowed:

class LINKED_LIST[ANY];
class LINKED_LIST[INTEGER],

since ANY and INTEGER are both classes.
A class may derive a type from a generic class either by becoming a

client, as shown below
feature

customers:LINKED_LIST[CUSTOMER]
or by supplying an actual parameter with the inheritance part:

class CUST_LIST
inherit LINKED_LIST [CUSTOMER]

In both cases an actual class must be provided - CUSTOMER in the above
cases; this is called an actual generic parameter.

The main advantage of a linked list is that it is a dynamic data structure,
the size of which is increased and decreased as elements are added and
removed. Each element in the list, apart from the first and the last, has a
predecessor and a successor. The kind of operations performed on a linked list
are similar to an array: add an element; remove an element; traverse the list;
search for an element. A linked list in Eiffel has a distinguishing feature that is
absent from most of the standard text-book explanations of lists, a cursor,
which indicates the current position in the list (see figure 10.1). Access to the
list is determined by the state of the cursor.

Void

Cursor

123 6 2

An Eiffel LINKED LIST with a Cursor

figure 10.1

 Eiffel Object-Oriented Programming 146

In case shown in figure 10.1, the call, item, would retrieve the value, 12; the
call, forth would move the cursor to the next element; item would then retrieve
the value 6. The call, back, would move the cursor back to the 2nd element. To
move the cursor to the first element there would, at that point, be three choices:
start, go_to_ith(1), or back.

A selection of the basic features in the Eiffel LINKED_LIST are
summarised below.

Transformers
forth -- moves cursor forward one element
back -- moves cursor back one element
start -- moves cursor to first element
finish -- moves cursor to last element
go_to_ith (i:INTEGER) -- moves cursor to ith element

add_left(v: like item -- adds element to left of cursor position
add_right (v: like item) -- adds element to right of cursor position
remove_left -- removes element to left of cursor position
remove_right -- removes element to right of cursor position
remove -- removes element at cursor position

 Accessors
before :BOOLEAN -- is cursor pointing before the list?
after:BOOLEAN -- is cursor pointing after the list?
off:BOOLEAN -- before or after
isfirst:BOOLEAN -- is cursor pointing to first element?
islast:BOOLEAN -- is cursor pointing to last element?

item : G -- returns element at cursor position
first: like item -- returns first element
last: like item -- returns last element
previous: like item -- returns element before cursor
next: like item -- returns element after cursor

The features are grouped into four sections, those which alter the cursor, those
which alter the contents of the list, those which query the state of the cursor,
and those which access items in the list.

The use of the generic parameter, G, as in the type of the accessor, item:
should be noted. This indicates that the type of the object returned will be the
type with which the class is derived. Similarly, the anchored declarations
which follow, indicate that the other accessors will return objects of the same
type as item. It is this which gives the generic class its flexibility: at compile
time the compiler is able to supply an actual class name as the parameter. It can

 Generic Classes 147

at the same time check that only elements which conform to that class will be
put into the list.

This brief introduction to generic linked lists concludes with an example
of a simple list_traversal algorithm (10.1). The reader is left to implement the
routine which adds elements to the list.

class CONTROLLER
creation

start
feature

int_list:LIST[INTEGER];
fill_list is
do

end -- fill_list
start is
do

!!int_list.make
fill_list;
from int_list.start
until int_list.after
loop

io.put_integer(int_list.item);
int_list.forth

end -- loop
end -- start

end -- CONTROLLER

10.1 Using LINKED_LIST

Our view of the syntax of an Eiffel class may now be updated to show how
classes may be defined with formal generic parameters, and how classes which
have formal generic parameters are inherited. It can be seen that after the name
of the class there is the provision for optional formal generic parameters. More
than one such parameter is allowed.

class <class_name> ["[" formal generic parameters "] "]
inherit

<class_type> ["[" actual generic parameters "] "]
 creation

<routine_name>
feature

{routines | attributes }
end

 Eiffel Object-Oriented Programming 148

10.3 Non-generic solutions to writing container classes

In Eiffel it would be possible to emulate Smalltalk and write a library of classes
which allowed any item to be added to a list. To do this we would simply make
the formal arguments of the routines of type ANY, so that the signatures of the
routines for adding and removing lists would be as follows:

add (an_Obj:ANY);
remove(an_Obj:ANY);

At first sight this might seem an attractive solution. We cannot provide a more
general facility than this. The problem is that it is unsafe; it makes static type
checking impossible - for example it does not allow the compiler to guarantee
that if we wish to have a list of integers, the list will contain integers and only
integers. Such an approach to building a library would certainly be inconsistent
with the Eiffel philosophy which includes reliability as well as reuse. Eiffel
container classes require us to specify the type of elements that are to be put in
the data structure, and in return we can rely on static checks to ensure that only
elements which conform to that type will ever get into the structure.

A similar solution, used in hybrid languages which contain no generic
facility, and no general class from which all classes automatically inherit,
would be to declare a base class designed to serve as a template for all classes
whose instances may be added to the data structure. Such a base class would
have virtual methods, that is to say methods designed to be overridden and to be
bound at run time - and any object which was to be added to the data structure
would have to conform to this base class. So for example we might declare a
class LINK_OBJECT, with a single attribute, link, which is a pointer to a
LINK_OBJECT, and a routine, smaller, to ensure that objects in the list can be
compared (figure 10.2).

LINK_OBJECT

link

smaller

figure 10.2

Class List would have a single attribute, first, a pointer to a LINK_OBJECT,
and the signatures of its routines would be as follows:

 Generic Classes 149

add(an_element:LINK_OBJECT);
remove(an_element:LINK_OBJECT);

If for example we wished to have a list of customers; all that would be required
would be to make class CUSTOMER inherit from LINK_OBJECT. In addition
to its own data and routines, class CUSTOMER would therefore have an
inherited attribute, link, which pointed to the next element in the list, and
smaller would be defined as appropriate for CUSTOMER (e.g. possibly by
comparing customer_id). Such a list of Customers is depicted in figure 10.3.

Void

Customer Customer

linklink

Customer

linkfirst

figure 10.3

This method, which has been much used in the past, is laborious, and subject to
the same weaknesses as would be the use of class ANY in Eiffel.

Genericity by contrast satisfies the requirements of reliability as well as
reuse: it enables us to write general classes, but to derive these with prescribed
types; this allows the compiler to guarantee that all the elements in a container
conform to the static type with which the class was derived.

10.4 Developing generic classes

This section contains two example which illustrate how generic classes may be
developed. The first returns to the two-dimensional array which was mapped on
to a vector developed in chapter 7. The second develops a new class, with three
generic parameters.

Class D2_ARRAY, which is shown in example 10.2, has been altered in
a few ways from its original specification in chapter 7: it has been designed to
inherit from ARRAY; the creation routine is called create, because make is
used by ARRAY; the names item and put have abeen renamed, since these also
clash with inherited names; a precondition has been added to each. A preferred
technique to resolve the name clashes would have been to use direct repeated
inheritance (see chapter 13) which would allow us both to redefine and to keep
copies of the original. It would also be wise to use the re-export facilities to
restrict the access of clients to inherited features which might prove dangerous.
This topics is covered in chapter 11.

class D2_ARRAY[G]
-- implemented using a one-dimensional array

 inherit
ARRAY[G]

creation
create

 Eiffel Object-Oriented Programming 150

feature
columns: INTEGER;
rows:INTEGER;
valid_coordinates(r,c:INTEGER):BOOLEAN is
do

Result := r <= rows and c<= columns
and r > 0and c > 0;

end -- valid_coordinates
put_at(element :G; row,col:INTEGER) is

require
valid_coordinates(row,col);

do
 put(element, (row-1)* columns+col-1)
 end -- put_at
 item_at(row,col:INTEGER) :G is

require
valid_coordinates(row,col);

 do
 Result := item((row-1)*columns + col -1)

 end -- item_at
 create(n_row,n_col:INTEGER) is

do
make(0, n_row*n_col -1);

 columns := n_col;
rows := n_row;

 end -- create
end --D2_ARRAY

Example 10.2 Generic two dimensional Array

We have in example 10.2 developed a routine, valid_coordinates, to aid the
user to check that preconditions are valid. This allows us to avoid duplicating
the code in the item_at routine. The reader should again note the use of the
formal generic parameter, G in this case, as the argument to a routine, and as
the result-type of a routine. Formal generic parameters may be used in the class
text wherever a type identifier would be used.

The reader who wishes to use class D2_ARRAY may declare attributes
as follows:

feature
names:D2_ARRAY[STRING]
numbers:D2_ARRAY[REAL]

and may create the arrays as shown below:
!!names.create(10,10);
!!numbers.create(50,1000);

 Generic Classes 151

The second case study illustrates how a generic class may have more
than one formal generic parameter. It will build a table which is capable of
storing information such as that depicted in figure 10.4, in which the
information in each of the three columns is of a different type.

20 1.5Kramer

Ojukwe

Smart

15 3.5

10 2.4

1

2

3

Row

figure 10.4

To do this we could write a generic class with the following formal parameters:
THREE_COL_TABLE[C1, C2, C3]

and could derive a type from this as follows:
my_table: THREE_COL_TABLE[STRING, INTEGER, REAL];

The number of actual parameters must be the same as the number of formal
parameters.

A number of alternatives for implementing the generic class
THREE_COL_TABLE. are possible, including three discrete arrays - one for
each column.

To add a row to the table, the heading for the routine add_row would be
written as follows:

add_row(lft:C1, mid:C2, rt: C3, row:INTEGER);
As already indicated in the previous example, formal generic parameters, C1,
C2 and C3 in this case, may be used wherever a type would be used. At this
point it is worth reiterating what has already been said about reliability and type
checking. The compiler can check the actual generic parameters to find the
types of C1, C2 and C3, and so can ensure that only a STRING, or an object of
a type that conforms to STRING, can be put into column 1; likewise, only an
INTEGER can be put into the middle column, and only a REAL into the right
hand column.

The following accessors could be added to class THREE_COL_TABLE:
left(row:INTEGER): C1;
middle(row:INTEGER): C2;
right(row:INTEGER): C3;

Again the use the formal generic parameters as the result types of the accessor
routines should be noted. This gives both the flexibility of deriving classes
using different types, as well as the guarantee of compile time checking and
reliability. A call to middle(2) would, given the data depicted in figure 10.4,

 Eiffel Object-Oriented Programming 152

return the value 15. A possible implementation for this class is provided in
example 10.4.

class THREE_COL_TABLE [C1,C2,C3]
-- implemented using three arrays
creation

make
feature {NONE}

lft_col:ARRAY[C1];
mid_col:ARRAY[C2];
rt_col:ARRAY[C3];

feature
rows:INTEGER;
valid_row(r:INTEGER) :BOOLEAN is
do

Result := r > 0 and r <= rows
end -- valid_row

-- accessor routines
left(row:INTEGER): C1is
do

Result := lft_col @ row;
end -- left
middle(row:INTEGER): C2 is
do

Result := mid_col @ row;
end -- middle
right(row:INTEGER): C3 is
do

Result := rt_col @ row;
end --right

-- transformer routines
insert_left(element :C1; row:INTEGER) is
do

 lft_col.put(element,row)
 end -- insert_left

insert_mid(element :C2; row:INTEGER) is
do

 mid_col.put(element,row)
 end -- insert_mid

insert_right(element :C3; row:INTEGER) is
do

rt_col.put(element,row)
 end -- insert_right

add_row(lft:C1;mid:C2; rt: C3,row:INTEGER) is
do

 Generic Classes 153

lft_col.put(lft,row)
mid_col.put(mid,row)
rt_col.put(rt,row)

end -- add
-- creation routine

make(n_row:INTEGER) is
do

!!lft_col.make(1,n_row);
!!mid_col.make(1,n_row);
!!rt_col.make(1,n_row);
rows := n_row;

 end -- make
end --THREE_COL_TABLE

Example 10.4 Generic THREE_COL_TABLE

Additionally a precondition could be written for each accessor and transformer
routine :

require
valid_row(row);

The reader may notice that three arrays are hidden, so that a client may access
their contents only through the routines provided in THREE_COL_TABLE.

An example of the flexibility a generic approach gives may be illustrated
as follows: we might at some later stage wish to have a table which had
different types of data, e.g those shown in figure 10.5.

CC

FF

AA

Row

1

2

3

10. 5

This could be derived using different types as appropriate:
my_table: THREE_COL_TABLE[CHARACTER,

RECTANGLE, FIGURE];
and it would not be necessary to change any of the code written for
THREE_COL_TABLE. Additionally THREE_COL_TABLE could be used to

 Eiffel Object-Oriented Programming 154

provide a structure with more than 3 columns. For example the number of
columns could be increased to five by nesting as follows:

my_table:THREE_COL_TABLE[THREE_COL_TABLE[STRING,
 INTEGER ,

 CHARACTER],
 RECTANGLE,

 FIGURE];
The reader should be able to work out that this would give a five column table
with the types from left to right as follows:

STRING INTEGER CHARACTER RECTANGLE FIGURE

10.5 Constrained genericity

Sometimes it is useful to restrict the genericity of a class by specifying that only
types with certain properties my be used as actual generic parameters. To
illustrate this we can return to an example first introduced in chapter 7, that of
sorting an array. Now it would be far better to produce a generic solution for
this. To do so it is necessary to ensure that the elements in the array are capable
of being ordered . To do this, a generic class would be used, but Eiffel permits
us to specify that the actual parameter should conform to COMPARABLE, as
shown in example 10.5.

class SORTABLE_ARRAY [S -> COMPARABLE]
inherit

ARRAY[S]

end -- SORTABLE_ARRAY

Example 10.5 Constrained Genericity

This means that, when instances of class SORTABLE_ARRAY are declared,
only classes which inherit from COMPARABLE may be used as actual
arguments. The following would all be valid,

feature
store:SORTABLE_ARRAY[INTEGER]
names:SORTABLE_ARRAY[STRING]
letters:SORTABLE_ARRAY[CHARACTER]

as would any class that we write that inherits from class COMPARABLE. An
implementation for this class is given in example 10.6.

class SORTABLE_ARRAY [S -> COMPARABLE]
inherit

ARRAY[S]

 Generic Classes 155

creation
make

 feature
 sort is

-- sorts array in ascending order
 local

sorted:BOOLEAN;
temp_item: S;

 index, last :INTEGER;
do

 from
last := upper ;

 sorted := false;
 until sorted or else last = lower
 loop
 from

last := last - 1;
index := lower -1
sorted := true

 until index = last
 loop

index := index + 1;
 if item(index) > item(index+1)
 then

-- swap with successor element
 temp_item := item(index+1);
 put(item(index),index+1);
 put(temp_item,index);
 sorted := false;
 end -- if
 end -- loop
 end -- loop
 end -- sort
 end -- SORTABLE_ARRAY

Example 10.6 Constrained genericity:SORTABLE_ARRAY

The use of this class is illustrated in example 10.7.

class SORT_TESTER
creation

start
 feature

 names: SORTABLE_ARRAY[STRING]

 Eiffel Object-Oriented Programming 156

print_array is
local

index :INTEGER
do

from index := names.lower - 1
invariant index < names.upper + 1
variant names.upper - index
until index = names.upper
loop

index := index + 1;
io.put_string(names.item(index));
io.put_new_line;

end -- loop
end -- print_array
start is

local
index:INTEGER

do
!!names.make(1,10)
from index := names.lower -1
until index = names.upper
loop

index := index + 1;
io.put_string("enter name => ");
io.read_line;
names.put(clone(io.last_string), index);

end -- loop
 names.sort;

print_array;
end -- start

end -- SORT_TESTER

Example 10.7 Testing Class SORTABLE_ARRAY

The reader should notice that we are unable to include a routine to print the
array in the generic class. To do this is not straightforward. Among the possible
solutions are the following

use a run-time test to establish the type of the elements in the
array, and call the appropriate output routine;

define the generic class SORTABLE_ARRAY with two
parameters, and make the second parameter class
PRINTABLE, which would be guaranteed to have a routine

 Generic Classes 157

called output defined in the same way that COMPARABLE is
guaranteed to have the < operator.

The first solution would have the disadvantage that class SORTABLE_ARRAY
would have to be altered to take account of new classes developed, which would
defeat the whole idea of a generic class. The second solution, shown in outline
in example 10.8, seems better.

 Eiffel Object-Oriented Programming 158

class SORTABLE_ARRAY [S -> COMPARABLE,
 P -> PRINTABLE]

.......................
print (out:P) is

local
index:INTEGER

do
from index := lower-1
invariant index < upper + 1
variant names.upper - index
until index = upper
loop

index := index + 1;
out.output(item(index))
-- code which calls a routine in class P
io.put_new_line;

end -- loop
end -- print_array

end --SORTABLE_ARRAY

Example 10.8 Generic class with two parameters

For STRING a class STRING_OUTPUT could then be defined, as a descendant
of PRINTABLE. This would make the routine output effective as follows:

output (s:STRING) is
do

io.put_string(s);
end;

This is far from straightforward. It would mean that a new descendant of class
PRINTABLE would have to be written for each CLASS that we wished to use
as an actual argument for class SORTABLE_ARRAY. Nevertheless it would
mean that class SORTABLE_ARRAY would not have to be modified. This
example is developed further in chapter 12 when abstract classes are
introduced.

10.6 Genericity in Eiffel: a summary

This provides a short summary of the points made in this chapter:

1.genericity is a mechanism which allows the creation of general
reusable classes; it is particularly useful for creating container classes:
arrays, lists, trees and so on;

 Generic Classes 159

2. generic classes are class templates from which actual classes may be
derived.

3. actual classes may be derived either as attributes or through
inheritance;

4. generic classes have one or more formal parameters, which are
replaced with appropriate class names when an actual class is created
from a generic class;

5. a formal parameter name may not be the name of an actual class;

6. formal generic parameters may be used in the class text wherever a
type identifier is allowable;

7.Eiffel supports constrained genericity; this gives added protection by
restricting the classes that may be used as actual parameters to those
which conform to the type of the formal generic parameter.

Exercises

1. Make notes on genericity and constrained genericity.

2. a) Write the short form for a generic class SET which inherits from
ARRAY, and which offers the following services:

Accessors:
empty -- true if empty
contains -- true if element passed in as argument is present

Transformer:
insert -- insert an element

Constructors:
 infix "+", union

infix "*", intersection
infix "-", difference

b) write the bodies of the routines (note that the creators must not alter
any existing sets, and must return new, independent sets with independent
elements) (note also that elements in a set may not be duplicated). Hint: clone
Current and then add/subtract members as necessary, and use deep_copy). Test
the class from a client class. At least two instances of SET will be needed to test
the creators. A print routine for class SET will aid testing.

3. Re-implement THREE_COL_TABLE using linked lists instead of
arrays.

 Eiffel Object-Oriented Programming 160

4. a) Derive types from THREE_COL_TABLE which would allow the
following representation of data:

i. INTEGER STRING REAL INTEGER STRING REAL
CHARACTER

 ii.CHARACTER STRING STRING REAL REAL INTEGER
STRING STRING REAL

b) Work out how,using the left, middle and right accessor routines
already defined, the following could be accesed from a structure, my_table, with
9 columns as in exercise 4 a) ii:

row 2 column5;
row 3 column 7;

 row 2 column 4;

11. Adapting inherited classes.

Frequently, when a class is inherited, the descendant class needs to make
alterations to the inherited class. The most common forms of alteration are

changing the name of an inherited feature to avoid a name clash
or to provide a more meaningful name within the context of the
new class;

redefining an inherited feature so that it has a different meaning
or behaves differently to the inherited feature;

changing the visibility of an inherited feature, usually by making it
private or restricting its use to a few named classes;

In Eiffel, this is known as feature adaptation, which is included in the
inheritance part of an Eiffel class, as shown in the syntax definition below:

class <class_name> ["[" formal generic parameters "] "]
[inherit

<class_type> ["[" actual generic parameters "] "]
[Rename]
[New-Exports]
[Undefine]
[Redefine]
[Select]

 end]
 creation

<routine_name>
feature

{routines | attributes }
end

It should be noted that order is significant. Rename must come before New-
exports, which must come before Undefine, and so on. Whenever one of the
feature adaptation subclauses is used, the end must be included.

This chapter covers the Rename, New-Exports and Redefine subclauses.
The Undefine and Select subclauses are covered in chapters 12 and 13
respectively.

11.1 New-Exports in Eiffel

It should be emphasised that Eiffel makes a clear distinction between a
descendant and a client, and that the declaration of features as private does not
affect their visibility in a descendant class. A descendant class has precisely the
same access to features as the ancestor class in which they were declared,

Eiffel Object-Oriented Programming 161

provided that they have not been renamed or redefined in any intervening class
in the inheritance hierarchy.

Sometimes it is desirable that features which have been inherited should
not be available to clients of a new class because it would be unsafe for them to
be used. We may take as an example the generic class D2_ARRAY, which was
introduced in chapter 10, and is reproduced in outline in example 11.1

class D2_ARRAY[G]
-- implemented using a one-dimensional array

 inherit
ARRAY[G]

creation
create

feature
columns: INTEGER;
rows:INTEGER;
valid_coordinates(r,c:INTEGER):BOOLEAN
put_at(element :G; row,col:INTEGER) is

require
valid_coordinates(row,col);

 item_at(row,col:INTEGER) :G
require

valid_coordinates(row,col);
 create(n_row,n_col:INTEGER)

end --D2_ARRAY

Example 11.1 Generic D2_Array

Class D2_ARRAY inherits from class ARRAY, and is implemented using a
one_dimensional array, with mapping functions to access elements of the array.
All the features defined for class ARRAY[G] are therefore available for clients
of class D2_ARRAY. It is fairly obvious, for example, that it ought not to be
possible to access a two-dimensional array using a single subscript. Likewise,
there are other inherited features, in addition to put, which it would be
undesirable for a client to use ; these include

force item lower upper
resize

So, given the declaration of a D2_ARRAY in a client class, as shown in class
ARRAY_TESTER in example 11.2, it would be possible for the client to make
unsafe calls, some of which are shown.

class ARRAY_TESTER
creation

start

 Adapting Inherited Classes 162

feature
store:D2_ARRAY[REAL];
start is
do
.............
end -- start
unsafe_instructions is
do

store.force(27.98,110);
store.resize(20,200);
store.put(67.76,25)

end -- unsafe-instructions
end -- ARRAY_TESTER

Example 11.2 Unsafe instructions used by client

In order to produce a safe class, it is necessary to prohibit access to these
features by clients. Eiffel provides a re-export facility ro this purpose.

 class D2_ARRAY[G]
inherit ARRAY[G]

export
{NONE} put, force, item,

resize, lower,upper
end -- inherit ARRAY

Example 11.3 Hiding inherited features

Example 11.3 indicates that no client of D2_ARRAY may use the facilities
listed. Given this alteration, the unsafe_instructions in example 11.2 would not
compile. Alternatively we could decide that clients of D2_ARRAY should be
prevented from using all inherited features, as shown in example 11.4.

class D2_ARRAY[G]
inherit ARRAY[G]

export
{NONE} all

end -- inherit ARRAY

Example 11.4 Restricting client access to all
 inherited features

Eiffel Object-Oriented Programming 163

It is possible to be more selective in the restrictions on visibility of inherited
features: a named class or classes may each be given different access:

class D2_ARRAY[G]
inherit ARRAY[G]

export
{CLASS_A} put, item ;
{CLASS_A, CLASS_B, CLASS_C} lower, upper
{NONE} force, resize

end -- inherit ARRAY

Example 11.5 Restricting access of certain clients
 to inherited features

Thus in 11.5 only CLASS_A has access to put and item, only CLASS_A,
CLASS_B and CLASS_C have access to lower and upper. No class has access
to force and resize.

The syntax rule for the re-export part of feature adapation is given in
figure 11.1.

export "{" class_name "}"

feature name

","

","

";"

all

 figure 11.1

It should be pointed out in regard to the above rule that NONE is a class which
inherits from every class, so that a client list written as {NONE}, (see example
11.5), is syntactically valid. There are additional rules which a compiler should
enforce:

(a). the reserved word all may appear only once for each class inherited,
so that the following would not be allowed:

export
{CLASS_A} all
{NONE} feature_a, feature_b, feature_c

 Adapting Inherited Classes 164

{CLASS_C} all

the only acceptable form in this case would be

export
{CLASS_A, CLASS_C} all
{NONE} feature_a, feature_b, feature_c

(b). no feature_name may appear twice, so that the following would be
invalid

export
{CLASS_A, CLASS_C} feature_b
{CLASS_D} feature_a, feature_b, feature_c

because feature_b appears in two different lists; the correct form would be:

export
{CLASS_A, CLASS_C, CLASS_D} feature_b
{CLASS_D} feature_a, feature_c

In the last case above, feature_b would be available to CLASS_A, CLASS_C,
and CLASS_D. Feature_a and feature_c would be available to CLASS_D only.
Any other inherited features would have the same export status that they had in
the parent class.

Finally, we need to consider the rules of export and re-export as they
affect descendants of clients. The rule is that if a class is listed in a client list as
having access to a feature, then its descendants have the same access. This is a
sensible rule, not least because when a class is written it is impossible to know
which descendants, if any, it will ultimately have.

11.2 Renaming features

Sometimes, it is necessary to rename an inherited feature. This occurs in cases
of multiple inheritance when a name clashes with another (chapter 13), it also
occurs when an inherited name seems unsuitable in the context of a new class.
The latter may be illustrated by showing how THREE_COL_TABLE could be
altered to allow a bank to hold information on clients. Each entry in a
CLIENT_LIST consists of client's name, account no, and current balance. In
example 11.6, the new names selected are more appropriate to the application.

class CLIENT_LIST
inherit THREE_COL_TABLE[STRING,INTEGER,REAL]

rename
left as name,

Eiffel Object-Oriented Programming 165

middle as account_no,
right as current_balance,
insert_left as insert_name,
insert_mid as insert_account,
insert_right as insert_balance

end
end -- CLIENT_LIST

Example 11.6 Renaming inherited features

It should be appreciated that the new names must thereafter be used by all
clients and descendants of CLIENT_LIST. The new names must also be used in
the text of CLIENT_LIST itself, including any subsequent feature adaptation
subclauses. As indicated at the beginning of this chapter, the rename must
always be the first in the adaptation clause. The syntax of rename is shown in
figure 11.2.

 as identifierrename feature_name

","

figure 11.2

11.3 Redefining features

The ability to redeclare or to over-ride an inherited feature is a fundamental of
object-orientation. It allows us to develop new classes by tailoring inherited
features to the particular needs of the new class. To do this in Eiffel we simply
list the features to be redefined in the redefinition subclause, and then redefine
the features in the feature-part of the class.

The constraints of the Eiffel type system and of design by contract put
limits on the extent to which a feature can be redefined. The key rules for
feature redefinition in Eiffel may be summarised as follows:

1. If the inherited feature being redefined is an attribute, then the new
feature must be an attribute;

2. The signature of a new feature must conform to the signature of the
inherited feature being redefined;

3. A precondition may not be strengthened, and a postcondition may not
be weakened.

Rule 2 needs further elaboration:
- it applies to attributes as well as to routines;

 Adapting Inherited Classes 166

- the type of an attribute must conform to the type of the attribute
being redefined;

- the type of a routine which returns a result must conform to the
type of the original routine;

- a new routine must have the same number of arguments as the
routine being redefined;

- the type of the formal arguments must conform to those in the
routine being redefined;

that means therefore that if a routine with the following heading:
any_routine(x:CLASS_A;y:CLASS_B):CLASS_Z;

is redefined, it must have the same same number of arguments, 2 in this case,
the arguments must be of types which conform to CLASS_A and CLASS_B
respectively, and the new result-type must also conform to the inherited result-
type, CLASS_Z. Rule 3 is discussed more fully later in the chaper. The syntax
of the redefines sub_clause is defined in figure 11.3.

redefine feature_name

","

figure 11.3

We can begin with an example by going back to class CLOCK. This
class has three attributes for storing hours, minutes and seconds, and is
restricted to storing up to 23:59:59. It has routines for incrementing the time by
a second, and for setting the time. Now we might wish to inherit from this to
create a class which can store almost unlimited elapsed time. To do this a could
a class TIME_KEEPER could be developed, with additional attributes, days
and years, as shown in example 11.7.

class TIME_KEEPER
inherit

CLOCK
rename

set as set_time
redefine

display, increment
end -- inherit CLOCK

creation
switch_on

feature
-- new attributes

Eiffel Object-Oriented Programming 167

days, years: INTEGER;
-- redefined features

display
increment

-- new routine
set_day_and_year(day, year:INTEGER) is

require
non_negative:

day >= 0 and year >= 0;
end -- TIME_KEEPER

Example 11.7 Renaming and redefinition

As shown above, it is necessary to redefine increment in order to ensure that the
attributes days and years are incremented at the appropriate time. It would
probably be useful to redefine set, but Eiffel will not permit a change to the
number of parameters, so it is renamed and given a more specific name,
set_time. A new transformer routine, set_day_and_year is introduced, to allow
the new attributes to be altered. The routine display is redefined to take account
of the new attributes, days and years.

An instance of class TIME_KEEPER is now be able to offer the
following services:

display set_time increment set_day_and_years
switch_on

The implications of the renaming and the redefinition now need examining.
Given the following attribute declarations:

a_clock:CLOCK;
a_time_keeper: TIME_KEEPER;

and given the following assignment:
a_clock := a_time_keeper;

the operations
display increment

would at run-time be bound to the routines defined in class TIME_KEEPER;
the following would be rejected by the compiler:

a_clock.set_time(10,10,10);
a_clock.set_day_and_year(10,10);

even though a_clock was dynamically attached to an instance of class
TIME_KEEPER; the following would be accepted by the compiler however,

a_clock.set(10,10,10).
The reader is left to complete class TIME_KEEPER as an exercise.

11.4 Renaming and redefinition compared

 Adapting Inherited Classes 168

The clear distinction between renaming and redefinition should at this
point be emphasised. When a feature is redefined, the new implementation
provided has a well defined relationship to the feature it is replacing. The
compiler will check to see that any redefinition is valid as indicated in the last
section. Renaming a feature, simply provides another name for the original
feature. The feature remains exactly the same as before. An error often made is
to use renaming simply to free a name for use in the current class. Whilst
perfectly allowable, it can lead to difficulties. The danger is that if we rename a
feature, and then reuse the original name, this might be confused with a
redefinition. In fact if we inherit a feature f, rename it as f2, and then declare a
new feature as f, this new f has no relationship to the inherited feature f. The
compiler will not check the validity of the new f against the old f. We can
illustrate the significance of this in examples 11.8 and 11.9.

In the first example, class B inherits from class A, and redefines f. Class
MAIN (example 11.8 c) is a client of both A and B, through the declaration of
the attributes x and y. When y, whose static type is A, is assigned to x, the
dynamic type of y now changes to B. The Eiffel run time system must at this
point ensure that the version of f which is called is that redefined in class B. In
the case of redefinition, the f in class B is simply a different version of the f in
class A, and the system knows which routine to call if the dynamic type of an
entity changes.

class A
 feature
 f is
 do
 io.put_string("Class A");
 end -- f
 end -- class A

Example11.8a: Feature Redefinition: Class A

class B
 inherit
 A;
 redefine f;
 end
 feature
 f is
 do
 io.put_string("Class B");
 end -- f

end -- class B

Eiffel Object-Oriented Programming 169

Example11.8b: Feature Redefinition: Class B

class MAIN
 creation
 start

feature
 x:B;
 y:A;
 start is
 do
 !!x;

!!y;
y.f -- y as defined in class A is executed

 y := x;
 y.f -- f as defined in class B is executed
 end -- start

end -- MAIN

Example 11.8c Feature redefinition and polymorphism:
root class, MAIN

Thexample given in 11.8 contrasts with the situation shown in example 11.9, in
which class B simply renames f as fb, and then declares another routine called
f. The routines f in A and f in B are totally unrelated: they are different
routines, which happen to have the same name. It would be possible therefore
to make f a a function, or to give it some formal arguments - each of which
would be prevented if the new f were a redefinition.

class B
 inherit
 A;
 rename f as fb
 end -- inherit
 feature
 f is
 do
 io.put_string("Class B");

end -- f
end -- class B

Example 11.9a Renaming to free a name for use

 Adapting Inherited Classes 170

In this case therefore, the new routine f will not be called if an an entity whose
static type is class A changes its dynamic type to B. As should be appreciated,
this is entirely appropriate given the fact that no guarantees may be made about
the relationship between the old f and the new f.

class MAIN
 creation
 start

feature
 x:B;
 y:A;
 start is
 do
 !!x;

!!y;
 y := x;
 y.f -- executes f defined in class A
 -- dynamic type of y is B
 end -- start

end -- MAIN

11.9b Renaming and Polymorphism

11.5 Feature redeclaration: stacks, ordered lists and queues

This section shows how, using inheritance and feature redeclaration, classes
STACK, ORDERED_LIST, and QUEUE may be derived from a generic
BASIC_LIST shown in example 11.10. It should be emphasised that this is
done purely to illustrate how such data structures could be built. For most
purposes the classes available in the Eiffel library provide all the facilities likely
to be required.

In class BASIC_LIST constrained genericity has been used to ensure
that a search may use the ">" and "<" operators defined in class
COMPARABLE.

class BASIC_LIST[G -> COMPARABLE]
 feature { BASIC_LIST }

hd:G
tail:like Current;
init(el:G; tl: like Current)

feature
head: G is

Eiffel Object-Oriented Programming 171

require
not is_empty

 size:INTEGER
 -- returns number of elements in list
is_empty:BOOLEAN

ensure
size > 0 implies Result = false

is_in(el:G):BOOLEAN is
-- returns true if el is in list

add (el:G)
 ensure

old size = size - 1;
-- head = el

 remove
require

size > 0
ensure

old size = size + 1;
head = old tail.head

end -- BASIC_LIST

Example 11.10 Outline of a recursive list;

Example 11.10 differs from LINKED_LIST introduced in chapter 10. It has no
cursor, and it is a recursive class: BASIC_LIST is either empty (void) or it
contains a head, and another BASIC_LIST. The representation of a list which
currently contains two elements is shown in figure 11.4.

tail

hd Tail

hd

Dummy node

default value of type G

an object of type G

tail

hd an object of type G

Void

figure 11.4

An empty list consists of a single element with default values, as shown in
figure 11.5.

 Adapting Inherited Classes 172

hd

tail
Void

default value of G

figure 11.5

The implementation of the routines is_empty and size are given in example
11.11, and should enable the reader to understand how the data in the initial
dummy node is always ignored - so that the real beginning of the list is the tail
of the dummy node, which is Void if the list is empty.

is_empty:BOOLEAN is
 do

Result := tail = Void;
ensure

 size > 0 implies Result = false
end -- is_empty
size:INTEGER is
do

 if tail = Void
 then Result := 0

 else Result := 1 + tail.size
 end -- if

 end -- size

Example 11.11 Handling of dummy node in BASIC_LIST

The rourine, size, routine returns 0 if the tail of the list is Void, that is to say if
only the dummy node exists; otherwise it makes a recursive call on the tail, and
adds one to the result. Likewise, as may be seen in example 11.12, the actual
head of the list is referenced by tail.hd, and the precondition for the routine
head, requires that the size of the list is greater than 0, in which case tail will
not be void, and adherence to the precondition will avoid a run-time error.

The reader might also note that in the routine is_in, the operators ">"
and "<" may be used, because, as mentioned earlier, constrained genericity
guarantees that any element will inherit from class COMPARABLE. The
remainder of the code for class BASIC_LIST is given in example 11.12.

class BASIC_LIST[G -> COMPARABLE]
 feature { BASIC_LIST }

hd:G
tail: like Current;
init(el:G; tl: BASIC_List[G]) is

Eiffel Object-Oriented Programming 173

do
hd := el;
tail := tl;

end -- init
feature
-- routines already supplied: see example 11.11
-- is_empty:BOOLEAN

 -- size:INTEGER

head: G is
require

not is_empty
do

Result := tail.hd
end -- head
is_in(el:G):BOOLEAN is

-- returns true if el is in list
do

if is_empty
then Result := false

elseif el < tail.hd or el > tail.hd
then Result := tail.is_in(el);
else Result := true
end -- if

end -- is-in
add (el:G) is

local
new_el:BASIC_LIST[G];

do
!!new_el;
new_el.init(el,tail);
tail := new_el;
 ensure

old size = size - 1;
-- head = el

end -- add
 remove is

require
size > 0

do
tail := tail.tail;

 ensure
old size = size + 1;
head = old tail.head

end -- remove

 Adapting Inherited Classes 174

end -- BASIC_LIST

Example 11.12 Class BASIC_LIST[G]

Readers with some knowledge of data structures may have realised that
BASIC_LIST is in fact a stack, a last in first out structure (LIFO), but the
normal terminology, top, pop and push, has not been used. The effect of the
operations push and pop on a stack s, is shown in the figure 11.6. As may be
seen items are added and removed at one end only.

18 2312 7Top

 s after instruction s.push(18)

2312 7Top

STACK s

2312 7Top

s after instruction s.pop

figure 11.6

Should we wish to write class STACK, it becomes a trivial exercise to inherit
from BASIC_LIST, and simply to rename the features head, add and remove as
top, push and pop respectively. This task is left to the reader as an exercise.

We may now discover that we need a list which is always in order, so
that the first element in the list will always be the smallest, and the last will
always be the largest. This requires us to redefine the add routine, since that is
the only feature which affects the ordering. This may be done through
redefinition as shown in exercise 11.13.

class SORT_LIST[G -> COMPARABLE]
inherit

 BASIC_LIST[G]
 rename add as insert,

redefine insert
 end -- inherit BASIC_LIST

end -- SORT_LIST

Eiffel Object-Oriented Programming 175

Example 11.13 Renaming and redefining a feature

The identifier insert seems more meaningful in the context of a sorted list than
add, so it has been renamed prior to redefinition. This means that instances of
SORT_LIST no longer have access to add.

It should be pointed out that it would not have been possible to redefine
add as required, had the second postcondition not been commented out. The
assertion , head = el, makes it clear that elements are added at the front of a
list, which is not what is required for a sorted list. Were this not commented
out, the new routine would not satisfy the postcondition, and an exception
would be raised if the postconditions were switched on. The rules regarding the
alteration to postconditions will be explained later in the chapter. The redefined
routine is given in example 11.14.

feature
insert(el:G) is

local
 new_el: like Current;

do
if is_empty or else el < tail.head
then

!!new_el;
new_el.init(el,tail);
tail := new_el;

 else tail.insert(el)
end -- if

end -- insert;

Example 11.14 Insert routine for SORT_LIST[G]

The above provides a good example of the use of the semi-strict operators.
Without the or else, two conditions would have had to be defined to avoid a
run-time error:

if tail = Void
then

 !!new_el;
..........

elseif el < tail.hd
then

 !!new_el;
.........

 else
tail.insert(el)

 Adapting Inherited Classes 176

end -- if
Now the routine remove must be considered: as defined in BASIC_LIST it
removes the first element. If it were to be redeclared to allow a specific item to
be removed, this would require a change to its signature, in a way not allowable
in Eiffel. An alternative would be to rename it as remove_first, and to define a
totally new remove. The new remove would in this case have no connection
with the inherited remove. In cases of polymorphic assignment this could lead
to undesirable results, as explained earlier in the chapter.

class SORT_LIST[G => COMPARABLE]
inherit

 BASIC_LIST[G]
 rename

add as insert,
remove as remove_first

 export
 {NONE} remove_first

 redefine
insert

 end -- inherit BASIC_LIST
 feature

-- already given -- example 11.14
insert(el:G)

 remove(el:G) is
-- one occurrence of el is removed

 require
 is_in (el)

do
 if el > tail.head

then tail.remove(el);
elseif el < tail.head
then

-- should not happen - see preconidition
else tail := tail.tail

 end -- if
 ensure
 size = old size - 1

 end -- remove
 end -- SORT_LIST

Example 11.15 Remove for class SORT_LIST

Eiffel Object-Oriented Programming 177

It may be noted in example 11.15, that remove_first has been hidden: it would
probably be undesirable to allow clients to remove elements at the front of a
sorted list.

In addition to classes BASIC_LIST, SORT_LIST, and STACK, if the
reader has defined this class, as suggested earlier, we shall now construct class
QUEUE. A queue is a first in first out structure (FIFO). This means that
elements are added to the rear, but as in BASIC_LIST, are still removed from
the front. In order to derive a queue, head may be renamed as front, remove as
de_queue, and add as en_queue. The routine en_queue is then redefined. The
code for class QUEUE is given in example 11.16.

 class QUEUE[G => COMPARABLE]
inherit

 BASIC_LIST[G]
 rename

 head as front,
 remove as de_queue,
 add as en_queue
 redefine

 en_queue
 end

feature
 en_queue(el:G) is

 local
 new_el:like Current;

 do
 if tail = Void

 then
!!new_el;

 new_el.init(el,tail);
 tail := new_el
 else

tail.en_queue(el)
 end -- if

 end -- en_queue

Example 11.16 Class QUEUE

The alert reader may have noticed that en_queue would be inefficient if there
were a very long queue, since it requires the whole list to be traversed to find
the last element. If a more efficient QUEUE were needed, then the proper
procedure would be to inherit from QUEUE, and to extend the new class by
adding a feature,

last : like Current

 Adapting Inherited Classes 178

 initially set to Void. The routine en_queue would then be redefined to allow it
to append an element directly to last, without needing to traverse the queue. It
would also update last, to ensure that it pointed to the latest element added to
the queue. The routine de_queue would then need to be redefined to take care
of the following case :

if tail = Void
then last := Void

end -- if
We now have a small data structure library with the inheritance

relationships shown in figure 11.7.

BASIC_LIST

STACK QUEUE SORT_
LIST

figure 11. 7

As stated at the beginning, an OO developer should not reinvent the wheel in
the way that we have done, and for most purposes the Eiffel library is sufficient
for all data structures likely to be required. For learning purposes, however, it is
useful to have some understanding of how such structures may be implemented.

The following two sections of this chapter may be skipped on a first reading.

11.6 Redeclaring assertions

When a class is inherited, the rules of Eiffel will not allow us to weaken the
original contract. This means that if we wish to make any changes to the
assertions, the following rules must be followed:

Class invariants may only be strengthened
Preconditions may only be weakened
Postconditions may only be strengthened

If a programmer wishes to write a new invariant for a class, the new
invariant is concatenated to all the inherited invariants, so that the inherited
invariants and the new one must all be true to avoid a violation.

The syntax for redefined preconditions and postconditions differs from
that used in declarations. For a precondition the form is

require else Assertion
and for a postcondition,

ensure then Assertion

Eiffel Object-Oriented Programming 179

In the first case the logic is that of an or else: the user must satisfy either the
original precondition or the new one; in the second case the logic is that of an
and then: the supplier must satisy the original postcondition and the new one.

These rules mean that if a routine to be redefined has no precondition
then there is no point in adding one to the redefined routine, because it will
have no effect. At run-time the assertion would be evaluated as

true or else new precondition
If a routine does not already have a postcondition then this is no problem. At
run-time the assertion would be evaluated as

true and then new postcondition
Postconditions that are too strong may impede redefinition, and make

classes less reusable, as was seen in section 11.4 when add was redefined for
class SORT_LIST. Our experiences with BASIC_LIST should provide insight
into how sensible postconditions can be written. A look again at the original
assertions for add (example 11.10), indicates that the original postcondition
was inappropriate: there was no need to specify where the new element would
be placed. It would have been correct for STACK, but for a BASIC_LIST it was
over-specified. For remove, however, it was necessary that the postcondition
should specify the item to be removed. Alternatives, including using a cursor
(e.g. LINKED_LIST, chapter 10), might have been considered.

The reader who has followed the case study in the previous section will
by now have appreciated that design for reuse is a far from trivial exercise.

11.7 Covariance

The concept of covariance is properly covered once the rules of conformance
and feature redeclaration are understood. Covariance refers to the conformance
rule which allows a formal argument in a routine in a descendant class to be a
proper descendant of the formal argument in the parent class.

For example, if CLASS_A has a routine r, with CLASS_B as an
argument type, r(arg:CLASS_B), and the routine is redefined in CLASS_A2,
which is a descendant of CLASS_A, then it is allowable for the type of the
parameter to be a descendant of class B, say CLASS_B2, r(arg:CLASS_B2). At
compile time the actual argument may only be of CLASS_B2 or a descendant
of CLASS_B2, not of CLASS_B. The more common contravariant rule would
not allow this redefinition, and there has been some disagreement in the Eiffel
community because of the fact that the redefinition appears to be a
strengthening of a precondition. Nevertheless there are occasions in which
covariance is useful, as the following example (11.17) shows.

This example involves two parallel class hierarchies: PERSON and
EMPLOYEE; PERSON_VIEW and EMPLOYEE_VIEW. The feature print,
which is declared in PERSON_VIEW, is redefined in EMPLOYEE_VIEW
using the covariant rule.

class PERSON;

 Adapting Inherited Classes 180

feature
 year_of_birth:INTEGER;
 name:STRING;

make(yr:INTEGER;nme:STRING) is
do

year_of_birth := yr;
name := nme;

end -- make
 end -- PERSON

Example 11.17a Class PERSON

class EMPLOYEE
inherit

PERSON;
creation

make
 feature
 salary:REAL

set_salary(r:REAL) is
do

salary := r;
end -- set_salary

end -- EMPLOYEE

Example 11.17b Class EMPLOYEE

It should be noted that class PERSON_VIEW is a client of PERSON through
the argument to the print routine, and similarly, EMPLOYEE_VIEW is a client
of EMPLOYEE.

class PERSON_VIEW
 feature
 print(p:PERSON) is
 do

io.put_integer(p.year_of_birth);
io.put_string(p.name);

 end -- print
end -- PERSON_VIEW

Example 11.17c Class PERSON_VIEW

Eiffel Object-Oriented Programming 181

class EMPLOYEE_VIEW
 inherit

PERSON
redefine

print
end -- inherit PERSON

 feature
print(e:EMPLOYEE) is

 do
io.put_string(e.name);
io.put_real(e.salary);

 end -- print
end -- EMPLOYEE_VIEW

Example 11.17d Class EMPLOYEE_VIEW

The root class, COVAR_TEST, illustrates how covariance is sometimes useful.
In this case it allows two views of an employee: that defined in
PERSON_VIEW, which outputs name and year_of_birth, and that defined in
EMPLOYEE_VIEW, which outputs name and salary. It should be apparent
that an employee view of a PERSON does not make any sense, and the static
type rules will not allow us to attempt this. The instruction

emp_view.print(a_person);
would be rejected by the compiler, since PERSON does not conform to
EMPLOYEE.

class COVAR_TEST
creation

start
feature

 p_view: PERSON_VIEW;
emp_view:EMPLOYEE_VIEW;
a_person:PERSON;
an_employee:EMPLOYEE;

start is
do

!!p_view;
!!emp_view;
!!an_employee.make(1967,"Lilian");
an_employee.set_salary(1900.00);
p_view.print(an_employee);
emp_view.print(an_employee);

end -- start

 Adapting Inherited Classes 182

end COVAR_TEST

Example 11.17e Using covariance

The reader should, however, consider the following
a_person := an_employee;
a_person.print(a_person);

This would be valid at class_level, but breaches system-level validity. In this
case its execution would cause no problems. The following would, however,
cause problems:

p_view := emp_view;
p_view.print(a_person);

The problem occurs because of the attribute, salary. In this case the dynamic
type of p_view is EMPLOYEE_VIEW, whilst the dynamic type of a_person is
type PERSON. When the call is made, the system tries to execute the following
code:

io.put_string(e.name);
io.put_real(e.salary);

the routine cannot sensibly handle the call to output salary, since PERSON has
no such attribute. The reader might wish to try this particular example, to see
how it is handled by the Eiffel system being used. Those who wish to read
further on the issue of system-level validity should consult Meyer (1992).

Exercises

1. Explain why it would be unsafe to use force, resize and put in an instance of
class D2_ARRAY.

2. The attributes of a class have the following export status:
x,y,z -- available only to CLASS_A
a,b,c -- available to all classes

Show how a descendant class could do the following
a) give CLASS_A access to x and a, and other classes no access to any;
b) give CLASS_A access to all features, and all other classes no access.

3. a)Implement CLIENT_LIST as a descendant of THREE_COL_TABLE.
b)Write class MENU which offers services: display_menu,

get_selection, hide_menu. The choices offered by the menu should be as
follows: up date customer details, enter new customer, retrieve customer details,
display customer details, quit;

c)Write class CLIENT_HANDLER which implements each of the
choices offered by the menu.

Eiffel Object-Oriented Programming 183

b) Investigate the file handling facilities available in the class libraries,
and provide a further option which allows a table to be filed in and filed out.

4.The postconditions for add and remove in BASIC_LIST are to be amended
as follows:

-- add
ensure

occurs(el) - old (occurs(el)) = 1
-- remove

ensure
old occurs(el) - occurs(el) = 1

Implement BASIC_LIST, write an occurs routine, and test the class with the
postconditions switched on.

5. Implement class SORT_LIST; provide a more efficient is_in routine than
that written in BASIC_LIST. (Hint: since the items are ordered, there is no
need to search the whole list)

184

12. Abstract Classes

An abstract class may be defined as
-a class which has one or more features whose implementation is

deferred to a subclass;
-a class which cannot be instantiated.

In Eiffel the word deferred tends to be used more than abstract. A number of
deferred classes may be found in the Eiffel libraries, including classes
COMPARABLE and NUMERIC, and in the EiffelBase Library classes such as
CHAIN and LIST. If these classes are examined, it should become apparent
that these are general classes, at and towards the top of inheritance hierarchies:
they describe properties which all descendants must have, but leave the
implementation to the descendant classes themselves.

This chapter shows how a deferred class may be written in Eiffel. It also
shows how deferred features may be effected, and effected features undefined. It
concludes with two case studies to illustrate the use of deferred classes.

12.1 Using an Eiffel deferred class: COMPARABLE

We can begin by looking at class COMPARABLE as an example of a deferred
or abstract class. Any deferred class in Eiffel begins with the keyword
deferred:

deferred class COMPARABLE
COMPARABLE contains four routines:

infix "<" (other:like Current):BOOLEAN;
infix "<=" (other:like Current):BOOLEAN;
infix ">" (other:like Current):BOOLEAN;
infix ">="(other:like Current):BOOLEAN;

which may be used to compare objects of any class which inherits from it. The
first routine is deferred, that is to say that it has no body, but is written as

infix "<" (other:like Current):BOOLEAN is
deferred

ensure
smaller: Result implies not (Current >= other)

end -- infix "<"
The other routines are said to be effective. For example the "<=" routine is
written using the "<" routine:

Result := not (other < Current).
In order to be able to use any of the routines a descendant class must make the
"<" effective.

As already indicated, it is not possible to have an instance of class
COMPARABLE; it is an abstract class designed solely to be inherited. So, for a
class, to be able to use the standard operators for comparison, the programmer
simply has to inherit COMPARABLE, and make the "<" routine effective:

Eiffel Object-Oriented Programming 185

class PERSON
inherit COMPARABLE
feature

name: STRING;
infix "<" (other:like Current):BOOLEAN is
do

 Result := name < other.name
end -- infix "<"

.........
end -- PERSON

Example 12.1 Effecting a deferred feature

This is illustrated in example 12.1, in which class PERSON is made to inherit
from COMPARABLE. Instances of class PERSON are ordered by name. Since
name is a STRING, which itself inherits from COMPARABLE, the "<"
operator may be used to compare the name of Current with the name of other.
This example shows how the "<" operator has two meanings in this class's
source code: one allows strings to be compared, the other allows the
comparison of persons.

Having made class PERSON inherit from COMPARABLE the other
routines declared in COMPARABLE may now be used to compare instances of
class PERSON. So, for example, given

p1,p2:PERSON;
we can make comparisons such as

p1 <= p2
p1 > p2

It should be noted that there is a difference between effecting a feature
and redefining it. A redefinition of a deferred feature would only take place if
it was necessary to change the signature of the feature. The use of an anchored
declaration in COMPARABLE makes this unnecessary: the signature

(other:like Current)
is equivalent in class PERSON to a signature

(other: PERSON)
It can be appreciated that anchored declarations are particularly useful in
defining deferred classes.

When a feature is made effective, the same rules apply regarding
preconditions and postconditions as for redefinition: it is not allowable to
strengthen preconditions nor to weaken postconditions. New preconditions and
postconditions take the form require else and ensure then, previously
introduced in chapter 11.

The syntax of a class may now be modified to take account of deferred
classes
 [deferred] class <class_name> ["["formal generic parameters"] "]

[inherit

 Abstract Classes 186

<class_type> ["[" actual generic parameters "] "]
[Rename]
[New-Exports]
[Undefine]
[Redefine]
[Select]

 end]
creation

<routine_name>
feature

{routines | attributes }
end

and the syntax of a routine may also be modified:
 <routine-name> [argument_part] [result_part] is
 [preconditions]

[local_part]
deferred | routine - body

 [postconditions]
 end

12.2 Undefining an effective feature

Sometimes it is desirable to make an inherited effective routine deferred. To do
this the undefine mechanism must be used. The undefine sub-clause, which
comes before redefinition, consists of the reserved word, undefine, followed by
one or more features. The syntax is shown in figure 12.1, it has the same form
as the redefine sub-clause, except of course that it begins with the keyword
undefine.

undefine feature_name

","

figure 12.1

This is not a greatly used facility, but is useful in cases of multiple inheritance
when a class inherits two or more versions of the same feature, and wishes to
use one version only. The solution is to undefine the version not required, as
shown in the case below in which classes A and B each have an effective
routine with the same name and origin.

inherit

Eiffel Object-Oriented Programming 187

A
-- assume that a feature f is inherited from A

end
B

undefine f
end

As a result of the undefine, the f features inherited from classes A and B are
merged, and the effective f feature in the new class is that inherited from A.

12.3 Simulating abstract classes

In some hybrid languages there is no facility for developing abstract classes. In
such languages they may be simulated by creating bodies of routines which are
either empty, have halt instructions, or display messages on the screen such as

'This message should never be displayed'
'Implementation is left to subclasses'

So, for example, class LINK_OBJECT, which was described in section 10.3,
would have a dummy routine body for smaller with an instruction such as

HALT.
There is of course nothing in such languages to ensure that the routine will not
at some time be executed, with undesirable effects: there is no mechanism to
ensure that an implementation of the routine is provided in a descendant class,
and nothing to prevent the creation of instances of a simulated abstract class.

12.4 Case study: deferred class PRINTABLE

We may now return to the example first introduced in chapter 10 when the
problem of writing a print routine for the generic class SORTABLE_ARRAY
was introduced. It was decided to create a new class, PRINTABLE, which was
to be used in the declaration of a formal constrained generic parameter:
 class SORTABLE_ARRAY [S -> COMPARABLE, P -> PRINTABLE]
PRINTABLE is a deferred class, which allows an output routine to be defined
for any class used as an actual generic argument for SORTABLE_ARRAY.

 deferred class PRINTABLE
 feature
 output(a:ANY) is
 deferred;

end -- output
 end -- PRINTABLE

Example 12.2 A deferred class

 Abstract Classes 188

Class STRING_VIEW, which inherits from PRINTABLE, is illustrated in 12.3.
In this case output is made effective and redefined, because it is necessary to
change the signature.

 class STRING_VIEW
 inherit
 PRINTABLE

redefine
output

end -- inherit PRINTABLE
 feature
 output(s:STRING) is
 do
 io.put_string(s);
 end -- output

end -- STRING_VIEW

Example 12.3 Redefining and effecting a deferred routine

An actual Sorted_List would be declared as follows
 my_list:SORTABLE_ARRAY[STRING,STRING_VIEW]
and the compiler would be able to check that the first actual parameter
conformed to the type of the formal argument in routine output. The print
routine in class SORTABLE_ARRAY, which has the signature

print (out:P)
where P is a constrained generic parameter, would now contain the single line:

out.output(item(index))
This may seem far from straightforward: a new descendant of class

PRINTABLE would be required for each class used as an actual argument for
class STORABLE_ARRAY. Nevertheless, it would aid the reusability of class
SORTABLE_ARRAY.

12.5 Case study: class CHESS_PIECE

This case study shows how abstract classes might be used to help us model
chess pieces. We will begin by outlining the essentials of chess:

there is a chess board consisting of an 8 * 8 matrix, each square
has a colour, black or white, and each square may contain a
chess piece, or may be unoccupied;

there are six kinds of chess piece: King, Queen, Rook, Knight,
Bishop, Pawn; each has different rules for moving: for example,
the King may move one square in any direction, and may not

Eiffel Object-Oriented Programming 189

move into a position from which it can be taken; the Queen may
move any number of squares vertically, horizontally or
diagonally; the Bishop any number of squares diagonally and so
on.

If we were producing a chess application, it would be sensible to try to capture
this in a hierarchy, such as that shown in figure 12.2.

CHESS_PIECE

ROOK BISHOPQUEEN

POWER_ COMPLEX

KNIGHT KING PAWN

PIECE

figure 12.2

The pieces are grouped into two: those which may move an unlimited number
of squares, and those which are less powerful and more complex. It should be
apparent that POWER_PIECE, COMPLEX and CHESS_PIECE are abstract;
an instance of any of these classes would never be required.

We may now consider what features each piece would have in common.
Each piece has

a colour
a position
an icon, a string or a character that can be displayed
rules to determine what is a legal move
the ability to move

The rules to determine the legality of a move would have to be deferred to the
lowest level, since each kind of piece has a different rule.

When considering the abstract class POWER_PIECE, the following
features might be included:

is the move diagonal?
is the move vertical?
is the move horizontal?

It is not clear whether COMPLEX_PIECE would actually be required,
since the only thing that a King, a Knight and a Pawn seem to have in
common, apart from their complexity, is their ability to move only a limited
number of spaces at a time. This case study will consider only power pieces.

The abstract class CHESS_PIECE is shown in example 12.4. It has one
deferred routine, is_legal_move. Routines have been included to initialise the
attributes, and to display the chess piece (but not the position) on the screen.

 Abstract Classes 190

There is also a routine, null_move, which returns true if the destination and
source are the same. All chess pieces need this, so it is correctly placed at the
root of the hierarchy.

deferred class CHESS_PIECE
inherit

CHESS_MATHS
feature

 row:INTEGER;
column:INTEGER;

 colour:CHARACTER;
 display_char:CHARACTER;

is_on_board(r:INTEGER; c:INTEGER):BOOLEAN is
do

 Result :=r >0 and r <= 8 and c >0 and c <= 8;
end -- is_on_board
is_legal_move(r:INTEGER;c:INTEGER):BOOLEAN is

 require
is_on_board(r,c)

deferred;
 end -- is_legal_move

null_move(r:INTEGER; c:INTEGER) :BOOLEAN is
do

Result := r = row and c = column
end -- null_move

 display is
 do
 io.put_character(' ');
 io.put_character(display_char);
 io.put_character(colour);
 io.put_character(' ');
 end -- display
 make(r :INTEGER; c:INTEGER; clr:CHARACTER;

disp:CHARACTER) is
require

is_on_board(r,c)
 do

row := r;
column := c;

 colour := clr;
 display_char := disp;

 end --make
 move_to(r :INTEGER; c:INTEGER) is

require
is_legal_move(r,c)

Eiffel Object-Oriented Programming 191

 do
 row := r;

 column := c;
end; -- move_to

invariant
valid_position: is_on_board(row,column)

end --CHESS_PIECE
Example 12.4 Class CHESS_PIECE

A few observations should be made about the implementation. The attributes
colour and display_char are both characters, so that a black queen might for
example be displayed as

Qb
and a white bishop as

Bw
The routine, make, initialises all the attributes, and is intended to be used as
the creation routine for all chess pieces. The invariant requires that a chess
piece must always be on the board: each coordinate must be in the range 1 to 8.

It should be noted that CHESS_PIECE inherits from CHESS_MATHS;
this class has been created to hold a few integer functions needed in this case
study and its continuation in chapter 14:

abs(i:INTEGER):INTEGER;
smaller(x,y:INTEGER):INTEGER;
larger(x,y:INTEGER):INTEGER;

Class POWER_PIECE is shown in example 12.5. Although it introduces
no new deferred features, POWER_PIECE is deferred because it fails to make
is_legal_move effective.

deferred class POWER_PIECE
inherit

CHESS_PIECE
feature { }

is_diagonal(r:INTEGER;c:INTEGER):BOOLEAN is
do

 Result := abs(c - column) = abs(r - row)
end -- is_diagonal
is_vertical(c:INTEGER) :BOOLEAN is
do

Result := c = column
end --is_vertical
is_horizontal(r:INTEGER) :BOOLEAN is
do

Result := r= row
end --is_horizontal

 end -- POWER__PIECE

 Abstract Classes 192

12.5 A deferred class:POWER_PIECE

The functionality of class POWER_PIECE is slight, but it should allow us to
simplify the code when the actual classes are written.

Finally, one of the actual classes, class QUEEN, is illustrated in example
12.6. The only task here is to make the routine, is_legal_move, effective. It may
be noted that, as already indicated, the inherited routine make has been used as
the creator. There is no need to define a different creation routine for most of
the classes since there are no additional attributes. This might not be true in
every case; class KING for example might need some attribute to indicate
whether the castle move was still legal. We shall not however continue this case
study that far.

class QUEEN
 inherit

POWER_PIECE
 creation

make
feature

is_legal_move(r:INTEGER;c:INTEGER):BOOLEAN is
 do

 Result := not null_move(r,c)
and then

 (is_diagonal(r,c)
 or is_vertical(c)

or is_horizontal(r))
 end -- is_legal_move

end --QUEEN

12.6 Effecting a deferred routine

Class QUEEN therefore consists of a single routine inherited originally from
CHESS_PIECE and now made effective. The features available to QUEEN are:

row column colour
display_char is_on_board null_move
make move_to display
is_legal_move is_diagonal is_horizontal
is_vertical

and of course the routines defined in class CHESS_MATHS. The
implementation of CHESS_MATHS is left for the reader to do as an exercise.

Eiffel Object-Oriented Programming 193

It is now possible to test the chess piece, using CHESS_GAME as a root
class. The routine start requires a user to input the position of the Queen, and it
then displays the coordinates of each square to which it would be legal for the
Queen to move.

class CHESS_GAME
creation

start
feature

a_queen:QUEEN;
start is

-- displays legal moves of a Queen
local

i,j,c,r,count:INTEGER;
do

io.put_string("enter start row");
io.read_integer;
r := io.last_integer;
io.put_string("enter start column");
io.read_integer;
c := io.last_integer;
!!a_queen.make(r,c,'b','Q');
from i := 0
until i = 8
loop

i := i + 1;
from j := 0
until j= 8
loop

j := j+1
if a_queen.is_legal_move(i,j)
then

io.put_integer(i);
io.put_integer(j);
io.new_line;
count := count + 1;

end -- if
end -- loop

end -- loop
io.put_integer (count);
io.put_string("possible moves ");

end -- start
end -- CHESS_GAME

Example 12.8 Root Class for testing QUEEN

 Abstract Classes 194

Exercises:

1. a)Design, implement and test class CHESS_MATH;
b)Implement class CHESS_PIECE, POWER_PIECE and QUEEN, using

CHESS_GAME as the root class;
c)Implement classes BISHOP and ROOK, and test them in turn by

modifying CHESS_GAME. (A bishop may move diagonally, and a rook may
move horizontally and vertically).

d) For Chess enthusiasts only - consider how is_legal_move could be
made effective for Knight, King and Pawn (in order of difficulty); is there any
value in creating an abstract class, COMPLEX_PIECE?

2. An application is required to handle the payroll for a firm. It has two kinds
of employee, those who are paid weekly, and those who are paid monthly.
Class EMPLOYEE has been identified as an abstract class. It has attributes
annual_salary, last_paid, and amount_paid, a transformer routine set_salary
which requires the employee's salary to be passed in as an argument, a deferred
routine pay_due, and a transfomer routine, pay_out, which adds pay_due to
amount_paid. The routine pay_out also has an integer argument which is used
to set last_paid. So for example the call

anEmployee.pay_out(5)
will alter the state of last_paid to 5.

a) Write classes WEEKLY and MONTHLY,each of which inherits from
EMPLOYEE and makes pay_due effective. (WEEKLY divides annual salary by
52, MONTHLY by 12). To test each class,write a root class which is a client of
WEEKLY and MONTHLY.

b) add a new deferred routine, pay_type:STRING, to EMPLOYEE, and
make this effective for each actual class e.g. "Monthly"; add a print_pay routine
to EMPLOYEE, which outputs the following on the screen:

Payment Details:

Annual Salary: < annual_salary > Previous_pay: < amount_paid>
Payment Type : < monthly/weekly> Period: < last_paid + 1>
Payment this period : <pay_due>
Total pay to_date < amount_paid + pay_due>

Amend the root class and test the new features added. For example, write a
loop which updates an EMPLOYEE, and prints out the pay details, for each
month of the year.

194

13. Multiple and Repeated Inheritance

Previous chapters have introduced single inheritance, and have looked at the
ways in which the features of inherited classes may be altered by descendant
classes. This chapter completes the study of inheritance by introducing multiple
and repeated inheritance.

13.1 Multiple inheritance

Multiple inheritance is defined as inheriting directly from more than one parent
class. Eiffel provides no limit to the number of classes that may be inherited.
Whilst this can be useful, it can also increase complexity, and the reader is
advised to exercise caution before using it too freely.

A simple use of multiple inheritance is demonstrated in example 13.1,
and the syntax of inheritance, updated to account for multiple inheritance, is
given in figure 13.1.

class INVOICE

 inherit
CUSTOMER;

 STORABLE
rename

store_by_name as file_out,
retrieve_by_name as file_in

 end -- STORABLE
feature

.......
end -- INVOICE

13.1 Multiple inheritance

Class INVOICE inherits all the features of CUSTOMER and STORABLE. It
could also, of course, have a number of its own features.

inherit class_type

feature_adaptationend

";"

figure 13.1

 Multiple and Repeated Inheritance 195

The syntax of multiple inheritance in Eiffel is relatively straightforward: the
key word inherit occurs once only, and may be followed by any number of class
types, each of which may have its own feature-adaptation part. Each feature-
adaptation part is terminated by the keyword end.

Whenever a class inherits from one or more classes, problems of name
clashes and duplicated routines require attention. Of the two, the name clash is
more common: identifiers such as make, create, add, remove, search, insert,
open, close, and a number of others, occur frequently in Eiffel classes, and
rightly so. Software developers should be encouraged to use such words, rather
than to think up unique identifiers which mean little or nothing. When clashes
occur because of inheritance, the correct solution, as should be apparent, is not
to go back and alter one of the parent classes, but instead to use the rename
facility.

Sometimes, as a result of multiple inheritance, a class obtains multiple
copies of a routine, when it only needs one. The solution is to join the features
using the undefine facility, as demonstrated in CUSTOMER_SUPPLIER below.

As an example of multiple inheritance, consider the case of a retail firm
which is developing an accounting application. This application keeps account
of money owing and money owed. Classes CUSTOMER and SUPPLIER have
already been developed (examples 13.2 and 13.3). Class CUSTOMER has five
attributes, name, address, ref_number, amount_owing and credit_limit. It also
has transformer routines, add_invoice, credit_payment, change_address,
set_limit and make, the last of which is also defined as the creator.

class CUSTOMER
creation

make
feature

name:STRING;
address:STRING;
ref_number: INTEGER;
amount_owing:REAL;
credit_limit:REAL;
-- transfomer routines
add_invoice(invoice_total:REAL) is

require
invoice_total > 0

do
amount_owing :- amount_owing + invoice_total

end -- add_invoice
credit_payment(payment:REAL) is

require
payment > 0

do

 Eiffel Object-Oriented Programming 196

amount_owing := amount_owing - payment
end -- credit_amount
change_address(adr:STRING) is
do

address := adr;
end -- change_address
set_limit(limit:REAL) is

require
limit > 0

do
credit_limit := limit

end -- set_limit
make(nme,adr:STRING; ref:INTEGER) is
do

name := nme;
address := adr;
ref_number := ref;

end -- make
end -- CUSTOMER

Example 13.2 Class CUSTOMER

Class SUPPLIER is similar to class CUSTOMER, it has attributes firm,
address, ref_number and balance_owed, and transformers add_invoice and
credit_payment.

class SUPPLIER
creation

make
feature

firm:STRING;
address:STRING;
ref_number:STRING;
balance_owed:REAL;
add_invoice(invoice_total:REAL) is

require
invoice_total > 0

do
balance_owed := balance_owed + invoice_total

end -- add_invoice
credit_payment(payment:REAL) is

require
payment > 0

do

 Multiple and Repeated Inheritance 197

balance_owed := balance_owed - payment
end -- credit_payment
change_address(adr:STRING) is
do

address := adr;
end -- change_address
make(nme,adr,ref:STRING) is
do

name := nme;
address := adr;
ref_number := ref;

end -- make
end -- SUPPLIER

Example 13.3 Class SUPPLIER

Usually the sets of customers and suppliers are disjoint, but occasionally a
person/firm is both a supplier and a customer. One solution to this is to create a
new class: CUSTOMER_SUPPLIER, designed to inherit both CUSTOMER
and SUPPLIER, as shown in figure 13.2.

CUSTOMER SUPPLIER

CUSTOMER_
SUPPLIER

figure 13.2

In order to achieve this the name clashes of each class must first be analysed
(see table below). Class CUSTOMER_SUPPLIER is given in example 13.4.

Clearly the new class needs only one address, and one change_address
routine. The latter may be joined simply by undefining one of the two inherited
routines. Address presents more of a problem: an attribute may not be
undefined, so the join in this case may be done by redefining both.

The attribute ref_number is a name clash, which can be resolved by
renaming as customer_number and supplier_number.

 Eiffel Object-Oriented Programming 198

Identifier CUSTOMER SUPPLIER

address -- STRING attribute same
ref_number -- INTEGER attribute STRING attribute
add_invoice -- adds to amount-owing adds to balance-

owed
credit_payment -- subtracts from subtracts from

 amount-owing balance-owed
change_address -- updates address same
make -- sets name, address, same, but note

ref_number ref_number

The routines add_invoice and credit_payment need more thought: in
CUSTOMER they alter amount_owing, in SUPPLIER they change
balance_owed. The solution taken is to rename them as invoice_customer,
credit_customer, credit_supplier,and pay_supplier to reflect what they do in
each case. Similarly, it is sensible to rename amount_owing and balance_owed
as customer_balance and supplier_balance. This requires a new routine,
overall_balance, which subtracts customer_balance from supplier_balance.

The make routines present a difficult problem. The difference in the
types of the final argument

make(nme,adrSTRING; ref:INTEGER) -- CUSTOMER
make(nme,adr,ref:STRING) -- SUPPLIER

means that they cannot be merged. It just happens that in our firm customers
have an integer reference number, and suppliers have reference numbers such
as "NW3400", and we have to live with it! One solution is to rename one, and
to use the other. The renamed routine would not be used, but as already
indicated, it cannot be undefined. In this case it would be wise to ensure that it
was not exported. Another solution would be to rename one and redefine it with
an empty body. Whilst not elegant, it would prevent the discarded routine from
being used by a descendant, which a re-export clause would not. Since one of
the make routines is to be discarded, an additional transformer is needed for
one of the reference numbers.

Finally the cases of name in CUSTOMER, and firm in SUPPLIER must
be considered. These are the same real-world entities, so both are not needed.
The solution taken is to rename name as firm, and then to redefine firm.

class CUSTOMER_SUPPLIER
 inherit

CUSTOMER
rename

ref_number as customer_number,
add_invoice as invoice_customer,
credit_payment as credit_customer,

 Multiple and Repeated Inheritance 199

name as firm,
amount_owing as customer_balance ,
make as customer_make

export
{NONE} customer_make

undefine
 change_address

redefine
address, firm

end
 SUPPLIER
 rename

ref_number as supplier_number
add_invoice as credit_supplier,
credit_payment as pay_supplier,
amount_owed as supplier_balance

redefine
address, firm

 end
creation

make
feature

address:STRING;
firm:STRING;
set_customer_id(id:STRING) is
do

customer_number := id;
end -- set_customer_is
overall_balance:REAL is

-- returns current balance
-- negative if debit_balance

do
Result := supplier_balance

 - customer_balance
end -- overall_balance

end -- CUSTOMER_SUPPLIER

Example 13.4 Multiple Inheritance: renaming,
undefining and redefining

The facilities available to a client of class CUSTOMER_SUPPLIER may
now be summarised:

attributes: customer_number, firm, customer_balance, address,
supplier_number, supplier_balance

 Eiffel Object-Oriented Programming 200

routines: change_address, make, invoice_customer,
credit_customer, set_customer_id, credit_supplier,

pay_supplier , overall_balance.

This class may now be tested as shown in example 13.5

class CUST_SUPP_TEST
creation

start
feature

s_cust:CUSTOMER_SUPPLIER;
start is
do

!!s_cust.make(" The Blagg Corporation",
 " 1319 Main, Topeka, Kansas", "L3409");

s_cust.set_customer_id(67890);
s_cust.invoice_customer(1000.45);
s_cust.credit_customer(500.00);
s_cust.credit_supplier(3000:97);
s_cust.pay_supplier(2000:00);
io.put_string(s_cust.firm);
io.put_string(s_cust.address);
io.put_integer(s_cust.customer_number);
io.put_real(s_cust.customer_balance);
io.put_string(s_cust.supplier_number);
io.put_real(s_cust.supplier_balance);
io.put_real(s_cust.overall_balance);

end -- start
end -- CUST_SUPP_TEST

Example 13. 5 Testing CUSTOMER_SUPPLIER

13.2 Repeated inheritance

Any language which supports multiple inheritance must define what
happens when the same class is inherited more than once. This may occur,
directly or indirectly as shown in the left hand section of figure 13.3, in which
A inherits class B twice. Direct repeated inheritance is used in the rare cases
when a class wishes to have two or more copies of a feature defined in another
class. Indirect repeated inheritance occurs as a result of multiple inheritance,
when two or more parent classes have a common parent. In the right hand part
of figure 13.3, B and C both inherit from D, therefore A indirectly inherits from
D twice.

 Multiple and Repeated Inheritance 201

 A

B

Direct

B

D

A

C

Indirect

figure 13.3

Whenever a class is inherited more than once the same rules apply
whether it is a case of direct or indirect repeated inheritance. These may be
summarised as shown in the table below.

REPEATED INHERITANCE RULES

if a feature has been inherited twice or more without any
intervening renaming, then the feature is shared - only one
copy of the feature is available;

if a feature has been renamed in parent classes or in the
current class, then multiple copies of the feature are available;
if the feature is an attribute then a select subclause is needed
in one or other of the inheritance clauses to remove potential
ambiguity;

if a feature has been redefined in parent classes or in the
current class, then more than one version of a feature is
available, and a select subclause is needed.

The next section deals with the case of indirect repeated inheritance.

13.3 Indirect repeated inheritance

Usually indirect repeated inheritance occurs through inheritance for re-
use, but sometimes it is useful to design a group of classes to make effective use
of this facility. This can be illustrated by reworking the previous example so
that CUSTOMER and SUPPLIER are made to inherit from class PERSON, as
shown in figure 13.4, and examples 13.6 and 13.7. Class PERSON has for the

 Eiffel Object-Oriented Programming 202

purposes of this example the features address, change_address, name and
set_name.

PERSON

CUSTOMER SUPPLIER

CUSTOMER_
SUPPLIER

figure 13.4

class CUSTOMER
inherit

PERSON
creation

make
feature

ref_number: INTEGER;
amount_owing:REAL;
credit_limit:REAL;
-- transfomer routines
add_invoice(invoice_total:REAL)

require
invoice_total > 0

credit_payment(payment:REAL)
require

payment > 0
set_limit(limit:REAL)

require
limit > 0

make(nme,adr:STRING; ref:INTEGER)
end -- CUSTOMER

Example 13.6 Class CUSTOMER
 - inheriting from PERSON

 Multiple and Repeated Inheritance 203

class SUPPLIER
inherit

PERSON
creation

make
feature

ref_number:STRING;
amount_owed:REAL;
add_invoice(invoice_total:REAL)

require
invoice_total > 0

credit_payment(payment:REAL)
require

payment > 0
make(nme,adr,ref:STRING)

end -- SUPPLIER

 Example 13.7 Class SUPPLIER
 - inheriting from PERSON

It will be noticed that the use of inheritance makes CUSTOMER and
SUPPLIER shorter and simpler. When class CUSTOMER_SUPPLIER is
written (example 13.8), there is a single copy only of the features inherited
from PERSON. This removes the need for undefinition and redefinition, and
suggests that this is a better solution than that shown in section 13.1.

class CUSTOMER_SUPPLIER
inherit

 CUSTOMER
rename

ref_number as customer_number,
add_invoice as invoice_customer,
credit_payment as credit_customer,
amount_owing as customer_balance ,
make as customer_make

export
{NONE} customer_make

end -- inherit CUSTOMER
 SUPPLIER
 rename

ref_number as supplier_number,
add_invoice as credit_supplier,
credit_payment as pay_supplier,

 Eiffel Object-Oriented Programming 204

amount_owed as supplier_balance
end -- inherit SUPPLIER

creation
make

feature
set_customer_id(id:STRING)
over_all_balance:REAL

-- returns current balance
-- negative if debit_balance

end -- CUSTOMER_SUPPLIER

Example 13.8 Indirect repeated inheritance

13.4 Selecting a feature

This section introduces the final part of feature adaptation, the select subclause.
It is used in repeated inheritance when there would be potential ambiguity in
cases of polymorphic assignment. This occurs when a class obtains two
different versions of the same routine and when a class obtains two copies of an
attribute. This section provides an example of the first case. An example of the
second case may be found in the next section.

The use of select in cases of multiple versions of a routine may be
illustrated by returning to the example worked in the previous section. If class
PERSON had the following routine,

display_name is
do

io.put_string(name)
end -- display_name

which was redefined in class SUPPLIER (and renamed) as
display_details is
do

io.put_string(name);
io.put_string(address);

end -- display_details
class CUSTOMER_SUPPLIER would have two versions of display_name: one
inherited from PERSON through CUSTOMER, the other inherited through
SUPPLIER (and renamed). In this case ambiguity would arise if an entity
whose static type was PERSON, was attached to an object whose dynamic type
was CUSTOMER_SUPPLIER:

p:PERSON;
cs:CUSTOMER_SUPPLIER;

...
p := cs;

 Multiple and Repeated Inheritance 205

p.display_name;
To remove this ambiguity, the select subclause would be used to indicate which
routine would be called in this case. In example 13.9, the routine selected is
that which was redefined and renamed in SUPPLIER.

class CUSTOMER_SUPPLIER
inherit

 CUSTOMER
.........

end -- inherit CUSTOMER
 SUPPLIER
 select

display_details
end -- inherit SUPPLIER
...........

end -- CUSTOMER_SUPPLIER

Example 13.9 Use of select to remove ambiguity

It should be appreciated that the compiler would reject the call
p.display_details

although that is the routine that would be selected at run-time. The call
cs.display_name

would of course invoke the routine defined in PERSON.
The syntax of the select part of feature adaptation is similar to the redefine and
undefine part. It consists of the reserved word, select, and a list of features
separated by commas.

13.5 Direct repeated inheritance

This section provides an example of the use of direct repeated inheritance to
obtain multiple copies of features, and multiple versions of routines. It also
discusses the use of direct repeated inheritance in the case when a redefined
routine also needs to call its parent routine.

The use of direct repeated inheritance may be illustrated by class
RESERVATION(example13.11), which inherits DATE twice, and also inherits
PERSON. It is assumed that PERSON has attributes name and address, and a
creation routine, make, which initialises both attributes. Class DATE is given
in example 13.10.

class DATE
creation

 Eiffel Object-Oriented Programming 206

set
feature

day, month, year :INTEGER;
display is
do

io.put_integer(day);
io.put_character(':');
io.put_integer(month);
io.put_character(':');
io.put_integer(year);

end -- display
set(dd,mm,yy:INTEGER) is
do

day := dd;
month := mm;
year := yy;

end -- set
end -- date

Example 13.10 Repeated inheritance
-- parent class, DATE

RESERVATION is designed to be used by a travel agent or a hotel to store the
beginning and end of a reservation, and the name and address of the person
making the booking. As a result of the repeated inheritance it has two copies of
day, month and year, two versions of set and display.

class RESERVATION
inherit

DATE
rename

day as start_day,
month as start_month,
year as start_year,
display as display_start,
set as set_start

select
set_start, start_day, start_month,

start_year
end -- inherit DATE
DATE

rename
set as set_end,
display as display_booking

 Multiple and Repeated Inheritance 207

redefine
set_end, display_booking

select
display_booking

end -- inherit DATE
PERSON

creation
make_booking

feature
persons:INTEGER;
display_booking is
do

io.put_string(name);
o.put_string(address);
io.put_new_line;
o.put_string(" number of persons : ");
io.put_integer(persons);
io.put_new_line;
io.put_string("start date: ");
display_start;
io.put_new_line;
io.put_string("termination date : ");
io.put_integer(day);
io.put_character(':');
io.put_integer(month);
io.put_character(':');
io.put_integer(year);
io.put_new_line;

end -- display_booking
set_end(dd,mm,yy:INTEGER) is
do

day := dd;
month := mm;
year := yy;

end -- set_start
make_booking (p:PERSON; nmbr:INTEGER;

 start,finishd:DATE) is
do

set_start(start.day,start.month,start.year);
set_end(finish.day,finish.month,finish.year);
make(p.address,p.name);
persons := nmbr;

end -- make_booking
end -- date

Example 13.11 Repeated Inheritance of DATE

 Eiffel Object-Oriented Programming 208

A client class with attributes of class PERSON, DATE and RESERVATION,
could now create and display a booking.

The most frequent use of repeated direct inheritance in Eiffel is when it
is necessary to extend rather than replace the functionality of an inherited
routine. To avoid duplicating code, it is useful if the new routine can call the
original routine. Smalltalk, for example, allows such calls to be prefixed by
super, which indicates that the routine required is in the parent class rather
than in the current class. Other languages have similar facilities. In Eiffel,
however, direct repeated inheritance must be used: one copy of the feature is
redefined and one copy is used. Additionally, one or both features must be
renamed, and one must be selected. New users of Eiffel are often confused by
this, and do not see why the following alternative stategy cannot be taken:

change the name of the inherited routine, a, to b
write a routine, a, which calls b

Whilst this appears to have the effect required, it is unsafe. The reader who is
unconvinced is encouraged to consider again the distinction between renaming
and redefinition, Whilst it is possible to achieve the effect of the Smalltalk
super by using rename to free a name for reuse, the effect is to remove any
connection between the routine in the parent class and the new routine defined
in the descendant: the compiler will not check the conformance of the new
routine to that in the parent; in cases when an instance of the descendant class
becomes attached to the parent class, the routine defined in the parent class will
be invoked. To ensure that the correct routine is called dynamically, that the
new routine conforms to the old, and, that the new routine is another version of
the old, a programmer must use redefines and select.

The reader's attention is drawn to display_booking in example 13.11,
which is a new version of display which calls the routine that it has redefined.
This version is executed even if an instance of RESERVATION is attached to
an entity of type DATE. So for example, in the following situation :

d1,d2:DATE;
r:RESERVATION

 p: PERSON

!!d1.set(12,12,95);
!!d2.set(24,12,95);
!!p.make("Arne Khristiansen","1503 Hoiendal, Frederikstad,

Norway");
!!r.make_booking(p,1,d1,d2);
d1 := r;
d1.display

the whole booking would be displayed:

 Multiple and Repeated Inheritance 209

 Arne Khristiansen 1503 Hoiendal, Frederikstad, Norway
number of persons: 1
start date: 12:12:95
termination date: 24:12:95

 Exercises

1. a) explain the difference between multiple inheritance, indirect repeated
inheritance and direct repeated inheritance;

 b) explain how two routines may be joined in Eiffel;

2. In chess, a queen may be said to be a combination of a bishop and a rook.
Rewrite QUEEN (see chapter 12), so that it inherits its functionality from both
those classes.

3. Amend CUSTOMER_SUPPLIER (example 13.9) so that in the case
p: PERSON
cs:CUSTOMER_SUPPLIER;

...
p := cs;
p.display_name;

the routine invoked in the call would be that defined in class PERSON.

4. a) Implement classes PERSON, DATE and RESERVATION and develop a
root class which allows the user to create and display a reservation.

 b) extend the previous application as follows
i) create a list of bookings using LINKED_LIST;
ii) write a class MENU, which allows a choice of facilities:

make reservation; display booking; delete reservation;
amend reservation;

 c) Consider whether there is any advantage in using repeated inheritance as
opposed to making RESERVATION a client of DATE. (Note the code in
display_booking which repeats code in DATE).

5. Explain why the strategy of renaming in order to free a name for reuse, is an
unsafe solution to the problem of extending the functionality of an inherited
routine.

210

14. Case Studies

This chapter provides two case studies. The first builds on classes developed in
the chapters on generic and abstract classes. The second, more complex study,
implements a back propagating neural network from scratch. The chapter also
illustrates the use of CRC cards in object-oriented design.

14.1 Solving the eight queens problem.

This is the problem of how eight queens may be positioned on a chess board so
that none can be taken by another. There are 92 solutions to this problem, one
of which is illustrated in 14.1.

Q

Q

Q

Q

Q

Q

Q

Q

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

figure 14.1

This case study shows how object-oriented methods may be used to solve it. The
solution derived is one which aims at reusability rather than efficiency: at some
time we may wish to solve other chess problems.

First, the objects in the system must be identified. We already have class
CHESS_PIECE, POWER_PIECE, QUEEN and CHESS_MATHS defined in
previous chapters. The other possible objects in the system are

colour (black or white)
square
chess board

Colour may be rejected straight away, it is an attribute both of SQUARE and of
CHESS_PIECE. The system should however have a CHESS_BOARD, which

 Case Studies 211

may be implemented by reusing D2-ARRAY (chapter 10) . Suare need not be a
class: the only information needed about a square in addition to whether it
contains a piece or not, is its colour, but the latter is solely an aid to human
players, and plays no part in the rules of chess.

Often it is sensible to separate a view of a class from the actual class:
this aids portability, and also allows different views to be built. A text-based
view, called CHESS_VIEW, will therefore be constructed.

Finally, CHESS_GAME will be developed, as the root class. The full
list of classes to be built/re-used are

D2-ARRAY CHESS_PIECE POWER_PIECE
QUEEN CHESS_MATHS
CHESS_BOARD* CHESS_VIEW* CHESS_GAME*

Those marked with * are still to be constructed.
We will begin by defining the responsibilities and collaborators of class

CHESS_BOARD, using the CRC methodology (Class Name, Responsibilities,
Collaborators). This is a simple methodology which is easy to follow, and is
suitable for relatively small systems. A CRC card is a 6 * 4 card, divided as
shown in 14. 2.

Class Name

Collaborators
Responsibilities

figure 14.2

The CRC cards for each of the new classes are given in figures 14.3, 14.4 and
14.5.

 Eiffel Object-Oriented Programming 212

CHESS_BOARD

CHESS_
PIECEplaces piece on board

removes piece

knows whether a square is occupied
knows which pieces are on the board
knows if a diagonal, vertical or horizontal

knows if any piece can reach a square
 path is clear

figure 14.3

CHESS_

PIECE

CHESS_VIEW
CHESS_

BOARD
draws board on screen

asks chess_pieces to draw themselves

knows how to access BOARD

figure 14.4

CHESS_
PIECE

CHESS_GAME
CHESS_
BOARD

CHESS_
VIEW

produces solution to 8 Queens problem

figure 14.5

The new classes are given in short form in examples 14.1, 14.2 and 14.3. As
already indicated, CHESS_BOARD (example 14.1) inherits from D2-ARRAY.

 Case Studies 213

CHESS_VIEW (14.2) consists of a single routine. CHESS_GAME (14.3) is a
client of CHESS_BOARD, CHESS_VIEW, and CHESS_PIECE/QUEEN.

class CHESS_BOARD
inherit

D2_ARRAY[CHESS_PIECE]
rename

valid_coordinates as is_on_board,
item_at as piece_at,
put_at as attach

end
creation

create
-- Must be initialised as 8 * 8 matrix

feature
detach(row:INTEGER; col:INTEGER);

-- removes piece from board
require

is_on_board(row,col)
ensure

not is_occupied(row,col)
is_occupied(row,col:INTEGER):BOOLEAN

-- true if a piece is attached at position specified
require

is_on_board(row,col)
can_be_reached(row,col:INTEGER;

colour:INTEGER):BOOLEAN
-- checks if a piece can be reached by
-- another of the opposite colour
require

is_on_board(row,col)
is_clear_path(row,col,dest_row,dest_col:INTEGER)

 :BOOLEAN
-- checks path between two squares on board
require

is_on_board(row,col);
is_on_board(dest_row,dest_col);

invariant
rows = 8;
columns = 8

end -- CHESS_BOARD
Example 14.1 Class CHESS_BOARD :short form

 Eiffel Object-Oriented Programming 214

class CHESS_VIEW
feature

display (:CHESS_BOARD);

end -- CHESS_VIEW
Example 14.2 Class CHESS_VIEW: short form

class CHESS_GAME
creation

start
feature

board:CHESS_BOARD;
view:CHESS_VIEW;
start

-- initialises board and view
-- calls eight queens routine

eight_queens
-- displays a solution to eight queens problem

end -- CHESS_GAME
Example 14.3 Class CHESS_GAME: short form

The implementation of the routines defined in class CHESS_BOARD is shown
in examples 14.4, 14.5 and 14.6. Example 14.4 shows detach, which puts Void
in the appropriate cell. Example 14.5 shows the accessor routines, each of which
may be traced back to the CRC card. This includes the routines which enable the
board to know whether any piece can reach a certain square, and also the routine
which checks whether a path is clear. This would be required for every move
except that of the Knight, which alone is allowed to jump over pieces. An alert
reader may notice that no single accessor has been provided to return a list of the
pieces currently on the board, or of the positions currently occupied.

detach(row,col:INTEGER) is
-- removes piece from board
require

is_on_board(row,col);
do

attach(Void,row,col)
end -- detach

Example 14.4 Class CHESS_BOARD: detach routine

is_occupied(row,col:INTEGER):BOOLEAN is

 Case Studies 215

-- true if a piece is attached at position specified
require

is_on_board(row,col);
do

Result := not (piece_at(row,col) =Void)
end -- is_occupied
is_clear_path(row,col,dest_row,dest_col:INTEGER):

BOOLEAN is
-- checks path between two squares on board

require
is_legal_move(row,col,dest_row,dest_col);
source_valid : is_on_board(row,col);
destination_valid :

is_on_board(dest_row,dest_col);
do

 if row = dest_row or col = dest_col
 then Result:= is_clear_row(row,col,dest_row,dest_col)
 elseif is_diagonal(row,col,dest_row,dest_col)
 then Result := is_clear_diagonal(row,col,dest_row,

dest_col)
else Result := true -- must be Knight's move
end -- if

end -- is_clear_path
can_be_reached(r,c:INTEGER; colour:CHARACTER)

:BOOLEAN is
-- checks if a piece can be reached by
-- another of the opposite colour

require
is_on_board(r,c)

local
i,j:INTEGER

do
 from j:= 0

until Result or j =8
loop

j := j+1
from i := 0
until i =8 or Result
loop

i := i+1;
if is_occupied(i,j)
then Result :=colour = piece_at(i,j).colour

 and then piece_at(i,j).is_legal_move(r,c)
 and then is_clear_path(i,j,r,c)

 Eiffel Object-Oriented Programming 216

 end -- if
end -- loop

end -- loop
end -- can_be_reached

Example 14.5 Class CHESS_BOARD: accessors

Example 14.6 provides auxiliary routines: is_clear_row, is_clear_diagonal and
is_diagonal. The latter seems out of place in this class - it requires no
knowledge of the state of the board, and it duplicates a routine in
POWER_PIECE. This may be an indication of a design flaw: perhaps the
classes, or the relationships between them, are not quite correct.

is_clear_row(row,col,d_row,d_col:INTEGER):BOOLEAN is
require

destination : is_on_board(d_row,d_col);
source: is_on_board(row,col);

local
i,j,stop:INTEGER;

do
 Result := true

if col = d_col -- is vertical
then i := smaller(row,d_row) ;

 j := col
 stop := larger(row,d_row)

from i := i + 1
invariant i <= stop + 1
variant stop + 1 - i

 until i >= stop
loop

if is_occupied(i,j)
then Result := false
i := i +1
elseif row = d_row -- horizontal

 then j := smaller(col,d_col);
i:= row;
stop := larger(col,d_col)
from j := j + 1
invariant j <= stop +1
variant stop +1 - j

 until j > = stop
loop

if is_occupied(i,j)
then Result := false

 Case Studies 217

end -- if
j := j + 1

end -- loop
end -- if

end -- loop
end --is_clear_row
is_diagonal(row,col,d_row,d_col:INTEGER):BOOLEAN is
do

Result := abs(row-d_row) = abs(col-d_col)
 end -- is_diagonal

is_clear_diagonal(row,col,d_row,d_col:INTEGER)
:BOOLEAN is

require
is_diagonal(row,col,d_row,d_col)

local
c,r,stop:INTEGER

do
Result := true;
if row < d_row and col < d_col

or row > d_row and col > d_col
then from

 r := smaller(row,d_row) +1;
 c:= smaller(col,d_col)+1;
 stop := larger(row,d_row);

until not Result or r = stop
loop

if is_occupied(r,c)
then Result := false
end -- if
r := r +1;
c := c +1

end -- loop
elseif col > d_col and row < d_row

or col < d_col and row > d_row
then from

 r := smaller(row,d_row)+1;
 c := larger(col,d_col)+1;

 stop := larger(row,d_row)
until not Result or r = stop
loop

if is_occupied(r,c)
then Result := false

end -- if
c := c-1;
r := r+1

 Eiffel Object-Oriented Programming 218

end --loop
end -- if

end -- is_clear_diagonal

invariant
rows = 8;
columns = 8

 Example 14.6 Class CHESS_BOARD: auxiliary accessors

The main remaining task is to encode the algorithm for solving the eight
queens problem. The problem, as previously stated, is to put all eight queens on
the board so that each is not in the path of another - this means that only one
queen may be on each row, each column, and each diagonal path. The
algorithm used (example 14.7) solves the problem the way we would if we were
physically to place the queens on the board (see figure 14.6). The first queen is
placed on 1,1 the second on 2,1, then on 2,2 then on 3,2 where it cannot be
taken; the third rests on 5,3, the fourth on 2,4, the 5th on 4,5 - and then we find
there is no place for the 6th queen, because each of the squares in column 6
may be reached.At this point the alogorithm backtracks: the preceding queen is
moved to the next safe row - if it exists - and then it tries again with the 6th and
succeeding queens - or if a safe row cannot be found for the preceding queen
(col 5) the algorithm retraces its steps back back to its predecessor(col 4) and
so on. When one of the predecessors has successfully been placed, the
algorithm then works forward again until, by a process of trial and error, all
eight queens are safely positioned on the board. It is much simpler to write in a
programming language than to describe in English!

A recursive routine, queen_in_place, for insertion in CHESS_GAME,
is shown in example 14.7, and the remainder of the class is given in example
14.8. Class CHESS_VIEW may be found in example 14.9. We now have a
complete application which should run and produce a solution to the eight
queens problem. Finally, example 14.8 provides an additional routine for
CHESS_GAME, which will output all solutions to the eight queens problem.

 Case Studies 219

Q

Q

Q

Q

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

Q

figure 14.6

queen_in_place(c:INTEGER) :BOOLEAN is
local

q: QUEEN;
r:INTEGER;

do
if c> 8

then Result := true
else

from
!!q.make(1,c,'b','Q');
r := 0

until Result or r = 8
loop

r := r +1
if not board.can_be_reached(r,c,'b')

then
q.move_to(r,c);

 board.attach(q,r,c);
 if not queen_in_place(c+1);

then board.detach(r,c)
else Result := true
end -- if

end -- if
end -- loop

 Eiffel Object-Oriented Programming 220

end -- queen_in_place

Example 14.7 Routine to solve eight queens problem

class CHESS_GAME
creation

start
feature

board:CHESS_BOARD;
view:CHESS_VIEW;
start is
do

board.make(8,8);
!!view;
eight_queens

end -- start
eight_queens is
do

if queen_in_place(1)
then view.display(board)
end -- if

end -- eight queens
queen_in_place(c:INTEGER) :BOOLEAN

-- see example 14.7
end -- CHESS_GAME

Example 14.8 Class CHESS_GAME

class CHESS_VIEW
feature

display(board:CHESS_BOARD) is
do

from c := 0
until c = 8
loop

c := c +1;
io.put_string(" "); -- 5 spaces
io.put_integer(c);

end -- loop
io.put_new_line
io.put_string ("____________________________")

-- 48 underscore characters
io.put_new_line;

 Case Studies 221

from r := 0;
until r = 8
loop

io.put_string(" | | | | | | | | |");
-- 5 spaces between each vertical bar

io.put_new_line;
r := r +1;
io.put_integer(r);
io.put_character('|');
from c := 0
until c = 8
loop

c := c+1
if board.is_occupied(r,c)

then board.piece_at(r,c).display
else io.put_string(" ")
end -- if
io.put_string(" |");

end -- loop
io.put_new_line;
io.put_string(" |___|___|___|___|___|___|___|___|");

-- vertical bars separated by 5 underscore
-- characters

io.put_new_line;
end -- display

end -- CHESS_VIEW

Example 14.9 Class CHESS_VIEW

all_queens(c:INTEGER) is
local

r:INTEGER;
q:Queen

do
!!q.make(1,c,'b','Q');
from r := 0
invariant r <= 8
variant 8 - r
until r = 8
loop

r := r+1;
if not board.can_be_reached(r,c,'b')

then
q.move_to(r,c)
board.attach(q,r,c)

 Eiffel Object-Oriented Programming 222

if c < 8
then all_queens(c+1)

else
view.display(board)

end -- if
board.detach(r,c)

end -- if
end -- loop

end -- all_queens

Example 14.10 All the Eight Queens solutions

14.2 Implementing a Back Propagating Neural Network

This section does not attempt to provide a full explanation of neural networks
theory or a complete description of the back propagation algorithm. The reader
is recommended to look at Hassoun (1995).

Neural networks have been used successfully in a wide range of
applications such as image processing, predicting credit worthiness and pattern
matching. Such networks are loosely based on current models of the biological
brain. They consist of layers of inter-connected neurons, each of which has n
inputs, where n is the number of neurons in the previous layer to which a
neuron is connected. Neurons in the first layer receive their inputs from file or
keyboard. Each neuron has a collection of n weights, corresponding to each
input, and each has a single output. This output becomes one of the inputs of
the neurons in the next layer, or, if the node is in the output layer, is part of the
output from the net.

The neurons in the output layer must have an additional attribute, the
expected or desired outcome, which is used to train the network: each set of
inputs has a corresponding expected outcome, which must also be supplied by
the user.

An example network is shown in figure 14.7. It has 4 layers: 1 output
layer, and three hidden layers. The minimum configuration for a back
propagation network would be 1 hidden layer and 1 output layer. The net
shown below has 2 inputs and 1 output. For each connection between a neuron
and its predecessor there is a weight, set randomly within a specified range, and
adjusted as the net is trained. There is also a weight between each input and
each node in the first hidden layer.

 Case Studies 223

Output

Neural Network with 4 layers and 13 neurons

w w

w

ww
ww

w
ww w

w
w
www
w

w

w

ww
ww

w
ww w

w
w
www
w

Layer
Hidden Layers

w

w
w

input

input w
w

w
w

outputw

w

w

w

figure 14.7

An additional input and weight at each level, called the bias, is not shown in
figure 14.7. In practice, therefore, each node in the third layer would have an
additional weight and connection. Figure 14.8 shows a simpler net, which may
be used to implement an exclusive OR function. This net requires two binary
digits as input, and will output 1 if true, and 0 if false. In this case the bias and
its connections to each node are shown.

Before a neural net may be used, it must be trained with a set of input
data and desired outcomes. So, for example, the XOR function shown in figure
14.7, would be trained with the following set of data and expected outcomes:

 Input 1 Input 2 Outcome

 1 1 0
 0 1 1
 1 0 1
 0 0 0

In training the following process is followed for each collection of inputs and
desired outcome:

the controller tells the output layer what output is expected
the controller passes some data to the first hidden layer and

asks it to calculate its output
the first hidden layer calculates its outputs, and passes these

to the next layer and asks it to calculate its output
each succeeding hidden layer continues this process until the

output layer is reached
the output layer calculates its output, and if it does not

fall within the allowed margin of error then it adjusts

 Eiffel Object-Oriented Programming 224

its own weights and asks its predecessor to adjust
its weights

the process of adjusting weights propagates backwards until
the first hidden layer has adjusted its weights

This is repeated until the difference between the expected and the actual output
is within acceptable limits. At this point the net is ready for use. The reader
should be warned that training a neural network can take a considerable time.
Normally a trained net is saved on file, so that it can be reloaded and used
again without further training. This case study will confine itself to keyboard
input. The process of filing and retrieving a trained network, which is library
dependent, is left to the reader.

Output
LayerLayer

BP Network to implement XOR function

w

w
w

input

input

w

w
w

w

w

bias

w
output

Hidden

figure 14.8

The case study develops a general net which may be configured for any
combination of layers, neurons, inputs and outputs. As always, the starting
point is to try to identify the classes needed. From the description so far the
following candidates may be identified for consideration as classes:
 Neuron Input Desired Outcome
 Output Weight Layer
 Connection Bias
Clearly a class NEURON will be needed. Input is a numeric data item to which
the neurons in the first layer must each have access. Output and weight are
clearly attributes of a NEURON. Bias is a global attribute to which all neurons
need access. The description of desired outcome given earlier, should indicate
that this is an attribute only of the neurons in the output layer. This should lead
us to identify another class, OUTPUT_NEURON, which is a specialisation of
NEURON.

Layer and Connection need further consideration. A layer is a collection
of neurons, each of which, except for the first hidden layer, has connections
with all neurons in the preceding and succeeding layers. It would be possible to
model each connection as a pointer from each neuron, so that each neuron in
the last hidden layer in the first figure shown above would have four input

 Case Studies 225

connections and one output connection. Since each neuron in a given layer
would have the same pointers this would be unecessary duplication, and it
would be more sensible to make connection an attribute of layer, so that each
layer knows its predecessor and successor layer. Clearly the first hidden layer
has no predecessor, and an output layer has no successor. In addition to
LAYER, OUTPUT_LAYER may be added to the list. From this discussion the
following list of classes seems sensible.
 NEURON OUTPUT_NEURON
 LAYER OUTPUT_LAYER
 NEURAL_NETWORK CONSTANTS
A root class, NEURAL_NETWORK, has been added. This is responsible for
configuring the network, and for initiating testing and training. Also a class has
been specified for the global constants required by the network.

The responsibilities and collaborators of each class (except
CONSTANTS) are specified using CRC cards as shown in figures 14.9 to
14.13.

calculates and stores weights

calculates output

NEURON

 for each connection
makes adjustments to weights

figure 14.9

knows desired outcome

OUTPUT_NEURON

calculates error signal

figure 14.10

 Eiffel Object-Oriented Programming 226

knows how many neurons in layer

LAYER

calculate and stores outputs

knows predecessor and successor NEURON

makes adjustments to weights of each neurons

knows inputs
trains its neurons

passes outputs to successor

asks predecessor to adjust weights

figure 14.11

OUTPUT_LAYER

calculates network error NEURON
OUTPUT_

initiates back propagation process
of adjusting weights

receives collection of expected outputs, and
informs each output neuron

figure 14.12

NEURAL_NETWORK
LAYER

OUTPUT_
LAYER

configures network

trains network

performs tests on network
I-O

saves/reloads net

figure 14.13

 Case Studies 227

The first class to be built is the basic component of a network, NEURON
(example 14.11), whose responsibilities are outlined in figure 14.9. Its
attributes consist of an array, to store the weights, and output and delta. The
latter is used as part of the adjustment to the weights during training. It inherits
from MATH_CONST, in order to access Euler. OUTPUT_NEURON, which is
a specialisation of NEURON, is given in example 14.12. It may be noted that
calc_hidden_delta has been made private. This is because it would be unsafe to
be used. Ideally it should be redefined, but it is not allowable since the new
routine required for this class is different.

class NEURON
inherit

CONSTANTS;
creation

make
feature {LAYER}
-- attributes

delta:REAL;
weights:ARRAY[REAL];
output:REAL;

-- transformer routines
calculate_output(inputs:ARRAY[REAL]) is

local
index:INTEGER;
net:REAL;

do
from index := 0;
until inputs.size = index
loop

index := index + 1;
net := net + weights.item(index) *

inputs.item(index);
end -- loop
output := 1 / (1 + (1/ Euler ^net))
-- users of Eiffel/S should use
-- exp(net) instead of Euler ^net

end -- calculater_output
adjust_weights(inputs:ARRAY[REAL]) is

-- used during training to alter weights
local

index:INTEGER
do

 from
until index = weights.size
loop

 Eiffel Object-Oriented Programming 228

index := index + 1;
weights.put(weights.item(index) +

learning_constant * delta *
inputs.item(index),index);

end -- loop
end -- adjust_weights
calc_hidden_delta(adjustment:REAL) is

-- calculates delta value
-- must be called before adjust_weights

do
delta :=adjustment * output * (1-output);

 end -- calc_hidden_delta
make(size:INTEGER) is

-- initialises weights using a random number
local

index:INTEGER
do

!!weights.make(1,size);
from index :=0
until index =size
loop

index := index + 1;
weights.put(rand,index);

-- assumes a random number
-- in range: -1.0 .. + 1.0

end -- loop
end -- make

end -- NEURON

Example 14.11 Class NEURON

Class NEURON contains three routines, calculate_output,
adjust_weights, and calc_hidden_delta, which are called from class LAYER.
The first is passed the inputs, and calculates the output , which consists of a
summation of the inputs multiplied by the weights (usually referred to as net),
which is then passed through a transfer function:

1

1+ −e net

 The second adjusts the weights; again it is passed the inputs by layer, and adds,
to the existing weight, an increment consisting of the product of the learning
constant, delta, and the corresponding input.

W new W old X() () * *= + η δ
The third, calc_hidden_delta, is passed a value calculated in the successor
layer, delta_sum, and uses this to calculate delta as indicated in the code above.

 Case Studies 229

For OUTPUT_NEURON all the above are inherited, but calc_hidden_delta
should not be used. In its place is the routine, calc_delta, which uses the
attribute, desired, to calculate delta. Each OUTPUT_NEURON also returns an
error value, which is used by OUTPUT_LAYER to calculate network_error.

class OUTPUT_NEURON
inherit

NEURON
export

{NONE} calc_hidden_delta
end

creation
make

feature {OUTPUT_LAYER}
desired: REAL;
error : REAL is

-- added to other nodes:gives network error signal
 do

 Result := 0.5 * (desired - output)
* (desired - output)

 end -- error
-- transfomer routines

 set_desired(d:REAL) is
do

desired :=d
end -- set_desired
calculate_delta is

-- calculates error signal for the node
do

delta := (desired - output) * output *(1- output)
end -- calculate_delta

 end -- OUTPUT_NEURON

Example 14.12 Class OUTPUT_NEURON

Class LAYER is given in example 14.13. The reader is encouraged to
refer back to figure 14.11 to refresh the memory about the its responsibilities.

 class LAYER
inherit

CONSTANTS
creation

make
feature

 Eiffel Object-Oriented Programming 230

connections:INTEGER;
previous, successor: LAYER;
outputs:ARRAY[REAL]
size :INTEGER is

 do
Result := nodes.size;

end -- size
calc_and_train(in:ARRAY[REAL]) is

-- used in training: calculates outputs and passes
-- them as inputs to next layer

do
inputs := in;
calculate_output;
successor.calc_and_train(outputs);

end -- calc_and_train
 display_output is

-- does not display the bias
local

index:INTEGER;
do

from index := 1
until index = outputs.size
loop

io.put_real(outputs.item(index))
index := index + 1

end -- loop
io.put_new_line

end -- display_output
calc(in:ARRAY[REAL]) is

-- used with a trained net - calculates outputs
-- and passes on to successor

do
inputs := in;
calculate_output;
successor.calc(outputs);

end -- calc
set_predecessor(pred:LAYER) is
do

previous := pred;
end -- set_predecessor
set_successor(succ:LAYER) is
do

successor := succ
end -- set_successor
make(nmr_weights:INTEGER;nmr_nodes:INTEGER) is

 Case Studies 231

require
nmr_weights > 0;
nmr_nodes > 0;

do
connections := nmr_weights;
create_neurons(nmr_nodes);

end -- make
feature {LAYER}

adjust_weights is
local

index:INTEGER
do

from index := 0
until index = size
loop

index := index +1;
nodes.item(index).calc_hidden_delta

(successor.delta_sum(index));
nodes.item(index).adjust_weights(inputs)

end -- loop
if previous /= void

then previous.adjust_weights
end -- if

end -- adjust_weights
delta_sum(i:INTEGER):REAL is

local
index:INTEGER

do
from index := 0
until index = size
loop

index := index +1;
Result := Result + nodes.item(index).delta*

nodes.item(index).weights.item(i)
end -- loop

end -- delta_sum
feature{NONE}

inputs:ARRAY[REAL]
nodes:ARRAY[NEURON]
create_neurons(nmr_nodes:INTEGER) is

local
count:INTEGER;
a_neuron:NEURON

do
from !!nodes.make(1,nmr_nodes);

 Eiffel Object-Oriented Programming 232

until count = size
loop

count := count + 1;
!!a_neuron.make(connections);
nodes.put(a_neuron,count)

end -- loop
end -- create_neurons
calculate_output is

-- asks each neuron to calculate its output
-- stores results in outputs
local

count:INTEGER
do

!!outputs.make(1,size+1);
outputs.put(bias,outputs.size);

--inserts bias as outputs
from
until count = size
loop

count := count + 1;
nodes.item(count).calculate_output(inputs);
outputs.put(nodes.item(count).output,count)

end -- loop
end -- calculate_output

 end -- LAYER

Example 14.13 Class LAYER

 The features that require most explanation are, delta_sum, and
adjust_weights, which are used in training. The former requires an integer
argument, specifying a weight: it returns the sum of the product of the delta of
each node and the weight specified. This is illustrated in figure 14.14, which
shows a layer with three neurons, each of which has three weights. The result
of the call, delta_sum(1), to the layer shown in figure 14.14 would return the
value 0.021 * 0.02 + 0.010 * 0.01 + 0.011 * 0.03 . This value would then be
used by the layer which made the call (the preceding layer of that shown in
figure 14.14), as the argument to a call to its first node to calculate delta:

nodes.item(index).calc_hidden_delta
(successor.delta_sum(index));

then, the same node is asked to adjust its weights:
nodes.item(index).adjust_weights(inputs)

This process continues for each neuron in the layer.

 Case Studies 233

0.001

0.010

0.040

0.012

0.021

0.014

0.011

0.008

0.003

neuron-1

neuron-3

neuron-2

weights

1

2

3

1

2

3

1

2

3

delta

delta

delta

0.02

0.01

0.03

figure 14.14

OUTPUT_LAYER is shown in example 14.14. It has new features,
set_expected, and network_error, and redefines create_neurons and nodes,
since it must collaborate with output neurons. The routine calc_and_train is
redefined to allow an instance to decide whether it is necessary to propagate
backwards to adjust all the weights in the network. The most significant
difference from LAYER is the redefinition of adjust_weights. The reader is
advised to compare the code for this routine with that of the inherited routine
given in example 14.13. The redefined code in calc_and_train should also be
examined. The attribute, error_level, is a global constant obtained by inheriting
CONSTANTS indirectly through LAYER.

class OUTPUT_LAYER
inherit

LAYER
redefine

nodes,create_neurons ,adjust_weights,
calc, calc_and_train

end
creation

make
feature {NONE}

nodes:ARRAY[OUTPUT_NEURON]
adjust_weights is

local
index :INTEGER;

do
from

 Eiffel Object-Oriented Programming 234

until index = size
loop

index := index + 1;
nodes.item(index).calculate_delta;

 nodes.item(index).adjust_weights
(inputs)

end -- loop
previous.adjust_weights

end -- adjust_weights
 feature {LAYER}

calc_and_train(in:ARRAY[REAL]) is
do

inputs := in;
calculate_output;
if network_error > error_level

then adjust_weights;
end -- if

end -- calc_and_train
calc(in:ARRAY[REAL]) is
do

inputs := in;
calculate_output;

end -- calc
feature

network_error:REAL is
local

index:INTEGER;
do

from
until index = nodes.size
loop

index := index +1;
Result := Result +

nodes.item(index).error
end -- loop

end -- network_error
set_expected(out:ARRAY[REAL]) is

local
count:INTEGER

do
from count := 0
until count = size
loop

count := count+1;
nodes.item(count).set_desired

 Case Studies 235

(out.item(count));
 end --loop

end -- set_expected
create_neurons(nmr_nodes:INTEGER) is

local
count:INTEGER;
neuron:OUTPUT_NEURON;

do
from !!nodes.make(1,nmr_nodes);
until count = size
loop

count := count +1
!!neuron.make(connections);
nodes.put(o_neuron,count)

end -- loop
end -- create_neurons

end -- OUTPUT_LAYER

Example 14.14 Class OUTPUT_LAYER

The rest of the chapter consists of relatively trivial, but lengthy code, to
implement the root class and the global constants. Most of the I/O responsibilities
of NEURAL_NETWORK are in class DATA_HANDLER, which allows the
former to be more abstract. The implementation of NEURAL_NETWORK is
given in example 14.15, DATA_HANDLER in 14.16, GLOBALS in 14.17 and
CONSTANTS 14.18. The reader should note the use made of once routines (see
chapter 5) to provide global constants. The code for the case study is complete,
apart from the routine rand, in class CONSTANTS, which has been left for the
reader to implement using the appropriate libary class.

The reader should be reminded that the application allows a neural
network with any number of levels and connections to be created. To use it to
implement an XOR function, the following inputs may be used to configure the
net and prepare for training (input is in bold type):

number of layers => 2
number of inputs =>2
enter bias -1
enter learning constant 1
enter error tolerance 0.001
input layer: enter number neurons 2
output layer: enter number neurons 1
number of sets of training data => 4

 Eiffel Object-Oriented Programming 236

 Bias is usually -1; learning_constant depends on the application, and varies
from 0.5 to 10.0; error level is kept as small as practicable, the smaller the
error level the longer the training time. After the above sequence, the user is
then required to enter the appropriate sets of training data and expected
outcomes as shown earlier. The data to test the net may then be entered.

 class NEURAL_NETWORK
inherit

DATA_HANDLER
creation

start
feature

input_layer:LAYER;
output_layer:OUTPUT_LAYER;
start is
do

get_parameters;
configure_network;
train
test

end -- make
test is

require
net_is_trained: has_trained

local
nmr_tests:INTEGER;

do
from

get_nmr_data_sets("How many tests => ");
get_inputs;

until nmr_tests = sets_of_data
loop

nmr_tests := nmr_tests + 1;
input_layer.calc(inputs.item(nmr_tests));
output_layer.display_output

end -- loop
end -- test
train is

require
net_configured: input_layer /= void

and output_layer /= void
local

 count:INTEGER;
do

get_nmr_data_sets

 Case Studies 237

("Number of sets of training data => ");
get_inputs;
get_expected_outcomes(output_layer.size);
from
until

 output_layer.network_error < error_level
and has_trained

loop
has_trained := true;
from count := 0
until sets_of_data = count
loop

count := count + 1;
output_layer.set_expected.

(outputs.item(count));
input_layer.calc_and_train.

(inputs.item(count))
end -- loop inner

end -- loop outer
end -- test

 configure_network is
-- configures a network using keyboard as io
require

nmbr_layers > 1
local

prev, temp_layer:LAYER;
index:INTEGER;

do
io.put_string(" input layer: ");
io. put_string("Enter number neurons");
io.read_integer;
!!input_layer.make(nmr_inputs+1,io.last_integer);
prev := input_layer;
from index := 1
until index = nmbr_layers - 1
loop

index := index + 1;
io.put_string("layer: ");
io.put_integer(index);
io. put_string("Enter number neurons");
io.read_integert;

!!temp_layer.make(prev.size+1,io.last_integer);
prev.set_successor(temp_layer);
temp_layer.set_predecessor(prev);

 Eiffel Object-Oriented Programming 238

prev := temp_layer;
end -- loop
io.put_string(" output layer: ");
io. put_string("Enter number neurons");
io.read_integer;
!!output_layer.make(prev.size+1,io.last_integer);
output_layer.set_predecessor(prev);
prev.set_successor(output_layer);

end -- configure_network
end -- NEURAL_NETWORK

Example 14.15 Root class for generalised
back propagating neural network

class DATA_HANDLER
-- a collection of data and routines used solely by
-- NEURAL_NETWORK

inherit
CONSTANTS

feature
outputs,inputs:ARRAY[ARRAY[REAL]];
nmr_inputs:INTEGER;
nmbr_layers:INTEGER;
has_trained:BOOLEAN;
sets_of_data:INTEGER;
get_inputs is

local
count,index:INTEGER;
temp:ARRAY[REAL];

do
!!inputs.make(1,sets_of_data);
from count := 0
until count = sets_of_data
loop

!!temp.make(1,nmr_inputs+1);
count := count +1;
from index := 0
until index = nmr_inputs
loop

io.put_string("input : ");
index := index + 1;
io.read_real;
temp.put(io.last_real,index);

end -- loop

 Case Studies 239

temp.put(bias,temp.upper);
-- bias is added to inputs

inputs.put(temp,count);
end -- loop

end -- get_inputs
get_expected_outcomes(nmr_outputs:INTEGER) is

local
count,index:INTEGER
temp:ARRAY[REAL]

do
!!outputs.make(1,sets_of_data);
from count := 0
until count = sets_of_data
loop

count := count + 1;
!!temp.make(1,nmr_outputs);
from index := 0
until index = nmr_outputs
loop

index := index + 1
io.put_string("expected output : ");
io.read_real;
temp.put(io.last_real,index);

end -- loop
outputs.put(temp,count);

end -- loop
end -- get_expected_outcomes
get_parameters is

 local
l_const,bs,tolerance:REAL;

do
io.put_string("Number of layers => ");
io.read_integer;
nmbr_layers := io.lastint;
io.put_string("Number of inputs => ");
io.read_integer;
nmr_inputs := io.last_integer;
io.put_string("enter bias ");
io.read_real;
bs := io.las_treal
io.put_string("enter learning constant");
io.read_real;
l_const := io.lastreal
io.put_string("enter error tolerance");
io.read_real;

 Eiffel Object-Oriented Programming 240

tolerance := io.last_real;
set_params(l_const,bs,tolerance)

end -- get_params
get_nmr_data_sets(message:STRING) is
do

io.put_string(message);
io.read_integer;
sets_of_data := io.last_integer;

end -- get_nmr_data_sets
end -- DATA_HANDLER

Example 14.16 Class DATA_HANDLER

class GLOBALS
feature {CONSTANTS}

error_level, learning_constant, bias :REAL;
set_lc(lc:REAL) is
do

learning_constant := lc
end - set_lc
set_bias(b:REAL) is
do

bias := b;
end -- set_bias
set_error_l(el:REAL) is
do

error_level := el
end -- set_bias

end -- GLOBALS
Example 14.17 Class GLOBALS

class CONSTANTS
feature {NONE}

rand:REAL
-- returns random number: range -1.0 .. + 1.0

set_params(lc,bs,el:REAL) is
-- used to set bias and learning_constant

once
global.set_lc(lc);
global.set_bias(bs);
global.set_error_l(el);

end -- set_params
learning_constant:REAL is
once

Result := global.learning_constant

 Case Studies 241

end --learning_constant
bias :REAL is
once

Result := global.bias
end -- bias
error_level:REAL is
once

Result := global.error_level
end --error_level

feature {NONE}
global: GLOBALS is
once

!!Result
end -- global

end -- CONSTANTS

Example 14.18 Class CONSTANTS

Exercises

The reader is recommended to implement and test each of these case
studies. In each case the reader is encouraged to reflect about the design, and to
try to improve the design and implementation. The following suggestions are
offered:

1. There are many loops in both case studies. An abstraction might be
used to produce code more elegant than the ubiquitous i := i+1 , e.g. an iterator
which responds to the messages such as move, finished, reset, index.

2. CHESS_BOARD might, for efficiency, sometimes use some of the
routines inherited from array, which require a single subscript - particularly
since each CHESS_PIECE knows its own position.

3. Consider the inheritance relationships in each case study. In the second
in particular, the following alterations might be beneficial:

NEURON and LAYER -- become deferred classes;
HIDDEN_NEURON, HIDDEN_LAYER -- new actual classes

4. Consider class DATA_HANDLER which has two arrays of array. Are
there any operations on these which can be abstracted to form a new class?

21

APPENDIX 1 Reserved words

These consist of Eifel keyords, conventionally written in bold in Eiffel texts,
and predefined names.

alias all and as
check class creation debug
deferred do else elseif
end ensure expanded export
external false feature from
frozen if implies indexing
infix inherit inspect invariant
is like local loop
not obsolete old once
or prefix redefine rename
require rescue retry select
separate strip then true
undefine unique until variant
when xor

Predefined names include the names of special types, which by convention are
written in uppercase, as are all class names; other predefined names by
convention begin with an upper case letter. The full list is as follows:

BIT BOOLEAN CHARACTER
Current DOUBLE INTEGER
NONE POINTER REAL
Result STRING

Eiffel Object-Oriented Programming 22

APPENDIX 2: Special symbols

-- double hyphen - used to precede acomment; the compiler
ignores everything that follows on the same line

! !! single and double exclamation marks, used for object creation

= /= equality/ inequality signs

 -> used for constrained genericity

{ } used to control visibility of features of a class

[] used for declaring parameters of classes

() used to over-ride precedence in expressions and to enclose formal
and actual routine arguments

. . used in multiway selection

<< >> used for manifest arrays

 := assignment operator

 ?= reverse assignment

' ' single quotation mark used for characters

" " double quotation marks used for strings

+ - arithmetic signs

 $ dollar sign, used for calls to external routines

 % used to precede special character codes

 / slash, used to precede an ASCII code

 . dot, used in calls; also in real numbers

: used in declaring types of attribute, arguments, locals and result
types of routines

; , used as separators

Writing a Simple Class in Eiffel 23

APPENDIX 3 Special characters

Character Code Name

@ %A At sign
BS %B Backspace
^ %C Circumflex
$ %D Dollar
FF %F Form Feed
\ %H Back slash
~ %L tilda
NL(LF) %N Newline
` %Q back quote
CR %R carriage return
%S sharp
HT %T horizontal tab
NUL %U nul character
| %V vertical bar
% %% percent
' %' single quote
" %" double quote
[%(opening bracket
] %(closing bracket
{ %{ opening brace
} %} closing brace

 ASCII characters may be represented as follows:
%/n/

where n is an integer representing the code of a character

