

 \square $\Omega(2^n)$ y $O(2^{n/2})$.

■ Ninguno de los anteriores.

Universidad de Valladolid

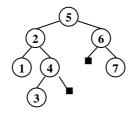
Departamento de Informática

Estructuras de Datos, 2º I.T.I. de Gestión

Convocatoria extraordinaria

6 de julio de 2004

CONVOCATORIA CALLASTORIALIA.	o de julio de 2004
Apellidos] 1 El tiempo disponible para la realización del examen es de 1,5 horas.
/ ipenidos	2 Sólo hay una respuesta válida para cada pregunta.
Nombre D.N.I.	3 Cada respuesta válida suma 8/13 ≈ 0,615 puntos, una respuesta errónea resta 0,1 puntos y dejar una cuestión sin responder ni suma ni resta puntos. La puntuación máxima corresponde a 8 puntos (los 2 puntos restantes corresponden a la nota de las prácticas)
1. ¿Son correctas las ecuaciones que describen las operaciones del siguiente TAD? ESPECIFICACIÓN TAD_EXAMEN USA ENTEROS, BOOLEANOS TAD cosa[elemento] OPERACIONES • Ø : → cosa • □ + □ : elemento, cosa → cosa • □ ∈ □ : elemento, cosa → booleano VARIABLES x, y : elemento; c : cosa ECUACIONES • x ∈ Ø == F • x + (y + c) == y + (x + c) • (x ≠ y) ⇒ x ∈ (y + c) == x ∈ c FIN_ESPECIFICACIÓN □ Son correctas. □ Son completas pero incoherentes. ■ Son coherentes pero incompletas. □ Son incoherentes e incompletas.	 4. Indicar cuál es el orden de complejidad más ajustado para la función anterior suponiendo que ahora lo que deseamos es calcular el máximo espacio ocupado en una llamada al procedimiento: □ O(1). ■ Θ(n) □ Θ(n²). □ Ninguno de los anteriores. 5. Al analizar la eficiencia de una operación de inserción sobre una estructura de datos se encuentra que a veces la inserción tarda un tiempo Θ(n²) pero eso implica que las siguientes n² inserciones tardarán un tiempo Θ(n) cada una. ¿Cuál de las siguientes afirmaciones es cierta (cuando n → ∞)? □ La operación es Θ(n²) en tiempo amortizado. □ La operación es Θ(n²) en tiempo amortizado. □ La operación es Θ(n³) en tiempo amortizado. □ La operación es Θ(n³) en tiempo amortizado. □ La operación es Θ(n³) en tiempo amortizado.
2. ¿Cuál es el TAD para el que las operaciones fundamentales son la inserción por valor y el acceso y borrado del elemento mínimo? ☐ TAD Lista indexada ☐ TAD Pila ☐ TAD Cola de Prioridad ☐ TAD Árbol AVL	<pre>6. Indicar cuál es el orden de complejidad de la siguiente función suponiendo que deseamos contar las operaciones aritméticas. function producto(a,b: integer) : integer; { Prec: b ≥ 0 } begin if b = 0 then producto := 0 else if b mod 2 = 0 then producto := producto(2*a, b div 2) else</pre>
3. Indicar cuál es el orden de complejidad más ajustado para el siguiente procedimiento, suponiendo que deseamos contar las operaciones <u>producto</u> : procedure f(n: integer; var x: real); var i : integer; begin if n < 1 then x := 0.0 else begin	producto := producto(2*a, b div 2)+a end; □ Θ(a·b) □ Θ(lg b) □ Θ(b) □ Ninguno de los anteriores
f(n-1,x); for i := 1 to n do x := x*0.9; f(n-2,x); end end; □ 0. □ Ω(n) y O(n²).	 7. ¿Cuál de las siguientes estrategias de diseño se ha utilizado para diseñar el código del problema anterior? Divide y vencerás. Backtracking. Programación dinámica. Fuerza bruta.


8. Otra manera de multiplicar dos valores es utilizar el siguiente esquema recursivo:

$$a * 0 = 0$$

 $a * b = a * (b-1) + a$

¿Cuál sería el orden de complejidad temporal de un algoritmo que calculara el producto a * b mediante la técnica de la tabla de resultados parciales basada en el esquema recursivo anterior?

Nota: Evidentemente se supone que el lenguaje de programación no puede calcular productos pero si sumas y restas.

- \square $\Theta(a)$
- \blacksquare $\Theta(b)$
- \square $\Theta(a+b)$
- ☐ No es posible aplicar esa técnica al problema.
- 9. Se desea implementar un tipo de datos que almacena números enteros en el que se van a realizar m operaciones que consisten en pedir un valor al usuario, x, insertarlo si no existe, y borrar el valor x+1 (si existe). Inicialmente la estructura contiene O(m) enteros. ¿Cuál de las siguientes representaciones sería más eficiente?
 - ☐ Vector desordenado.
 - □ Vector ordenado.
 - ☐ Lista enlazada ordenada.
 - Tabla de dispersión.
- 10. El árbol mostrado en la figura es:
 - ☐ Un montículo.
 - Un árbol AVL.
 - ☐ Un árbol completo.
 - ☐ Ninguno de los anteriores.

- 11. Indique cuál de las siguientes afirmaciones es falsa:
 - \square Es posible ordenar un vector utilizando un árbol AVL en un tiempo $\Theta(n \lg n)$.
 - Es posible ordenar un vector utilizando una tabla de dispersión cerrada en un tiempo $\Theta(n \lg n)$, si la función de dispersión es uniforme.
 - \square Si el rango de las claves es *m*, la estrategia de ordenación por recuento requiere un espacio adicional $\Omega(\lg m)$.
 - ☐ La estrategia de ordenación por recuento requiere que el método de ordenación de las subclaves sea estable.
- 12. Se dispone de una función de dispersión que es uniforme para el conjunto de datos que se van a insertar. Esta propiedad garantiza que..
 - ☐ No se van a producir colisiones.
 - ☐ No va a ser necesario reestructurar la tabla.
 - \square Los accesos van a ser $\Theta(1)$.
 - Ninguna de los anteriores.
- 13. En una tabla de dispersión cerrada con exploración lineal y borrado perezoso de tamaño 10 se realiza la siguiente secuencia de operaciones (en el orden indicado): Se insertan las claves 19, 29, 9, 31, 28, se borran las claves 9 y 19 y se insertan las claves 48 y 39. ¿Cuál es el contenido de la tabla?

0	1	2	3	4	5	6	7	8	9
29	39	31	42					28	48
0	1	2	3	4	5	6	7	8	9
29	48	31	28					28	39
0	1	2	3	4	5	6	7	8	9
39	31	48	39					28	29

Ninguna de las anteriores

- Fórmulas Útiles ——

$$\sum_{i=1}^{n} i^{k} \in O(n^{k+1})$$

$$T(n) = a \cdot T(n/b) + O(n^{k})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$T(n) = a \cdot T(n-b) + O(n^{k})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$T(n) \in \Theta(n^{k}) \quad \text{si } a < b^{k}$$

$$T(n) \in \Theta(n^{k} \cdot \lg n) \quad \text{si } a = b^{k}$$

$$T(n) \in \Theta(n^{\log_{b} a}) \quad \text{si } a > b^{k}$$

Firma del alumno:		