












ESMA Boston Corpus (English)
(Spanish) f1a f2b f3a m1b m2b m3b

Input Feature μ σ μ σ μ σ μ σ μ σ μ σ μ σ

f0 range 48.2 26.3 39.6 39.7 56.0 43.3 42.2 42.9 26.7 30.6 24.7 30.7 28.0 27.3
f0 maxavg diff 22.8 16.1 19.1 21.2 25.1 21.7 18.7 21.0 14.5 19.5 12.2 16.8 13.2 13.5
f0 minavg diff 25.4 14.6 20.4 21.8 30.9 26.4 23.5 25.8 12.3 13.8 12.4 16.0 14.7 15.4
f0 avgutt diff -0.8 18.4 -19.0 57.5 -5.5 42.5 -21.6 62.8 -13.4 40.5 -28.0 60.2 -15.6 45.7
e range 18.6 8.5 13.9 6.8 16.7 6.4 13.7 6.3 12.9 6.5 12.4 6.9 11.5 5.2
e maxavg diff 10.0 5.4 7.7 4.4 9.2 4.1 7.7 4.0 7.7 4.2 7.8 4.8 6.9 3.6
e minavg diff 8.6 4.1 6.2 3.1 7.6 3.4 6.0 3.1 5.2 3.0 4.7 2.8 4.6 2.2
duration -0.9 9.3 2.5 9.8 4.2 10.6 1.4 12.0 1.0 9.9 -0.5 12.0 1.2 9.5

Table 2. Statistics of the features for the different corpora and subcorpora. Units:
f0 range, f0 maxavg diff, f0 minavg diff and f0 avgutt diff in Hz; e range,e maxavg diff
and e minavg diff RMSE/100, and duration is normalized*10.

range (e range), difference between maximum and average within word energy
(e maxavg range), difference between average and minimum within word energy
(e minavg range); duration: maximum normalized vowel nucleus duration from
all the vowels of the word (normalization is done for each vowel type) (duration).

The syntactic lexical POS Tagging information has shown to be useful in
the improvement of the classification results (see [15, 1]). There is no obvious
correspondence between POS tags used in each corpus: BURNC corpus uses the
Penn Treebank tag set (labeled using the BBN tagger [9]) and ESMA uses the
EAGLES tag set for Spanish (labeled using the Freeling tagger). We decided
to use the classical classification that considers the different words of the utter-
ance to have the role of function word versus content word. This classification
is broadly used for modeling Spanish intonation in Text to Speech contexts [4].
The Penn Treebank tags have been collapsed so that the Function Words were:
EX (existential there), RP (particle), CC (coordinating conjunction), DT (de-
terminer), IN (preposition, conjunction subordinating), WDT (Wh-determiner,
TO (to preposition) and CD (cardinal number). The rest of the types of words
are considered as Content Words. The words of the ESMA corpus are a priori
classified in terms of function vs. content word as the corpus is segmented into
stress groups (an stress group is formed by one content word plus the preceding
function words).

Regarding to context, we focus on local effects (at the level of word and/or
syllable) as the context can be highly dependent on the language and the mod-
eling of its correspondence is beyond the scope of this paper.

2.2 The classifiers

The Weka machine learning toolkit [8] was used to build C4.5 decision trees
(J48 in Weka). Different values for the confidence threshold for pruning have
been tested, although the best results are obtained with the default value (0.25).
The minimum number of instances per leaf is also set to the default value (2).

A Multilayer Perceptron (MLP) with a non-linear sigmoid unit is trained for
each classification problem, using the Error Backpropagation learning algorithm.



ESMA-UPC BURNC BURNC.f1a BURNC.f2b BURNC.f3a BURNC.m1b BURNC.m2b BURNC.m3b

ESMA-UPC 86.6/81.0 72.7/76.5 75.6/76.0 74.7/76.1 76.5/77.9 82.7/76.0 73.6/75.5 75.9/74.7
BURNC 81.4/60.3 80.5/80.4 – – – – – –
BURNC.f1a 71.1/72.1 – 83.2/80.3 79.8/78.3 76.9/74.6 78.7/77.4 80.6/80.4 78.0/76.7
BURNC.f2b 81.5/65.5 – 81.5/80.0 84.6/82.9 78.6/74.3 79.0/72.6 81.6/74.5 79.4/75.1
BURNC.f3a 80.9/78.6 – 80.7/79.5 79.0/79.8 82.2/80.3 80.3/77.8 82.4/81.6 79.1/77.3
BURNC.m1b 76.6/75.9 – 77.6/77.0 78.0/76.8 76.7/75.6 84.7/80.8 74.7/76.9 77.8/75.0
BURNC.m2b 74.4/63.0 – 80.5/79.5 77.8/75.1 78.3/73.5 79.1/74.4 83.0/82.3 78.1/75.8
BURNC.m3b 69.3/75.5 – 81.5/80.8 78.4/78.9 78.1/77.2 79.9/78.6 79.9/81.0 81.0/76.6

Table 3. Classification rates (in percentages) using words in terms of the presence of
accent. The training corpus in the rows; the testing one in the columns. In the cells
(xx/yy), where xx is the classification rate obtained with the C4.5 classifier, yy with
the MLP classifier.

Several network configurations were tested, achieving the best results with the
following: i) single hidden layer with 12 neurons, following the Gori results [7],
more hidden units than inputs were used to achieve separation surfaces between
closed classes, ii) 100 training epochs, iii) two neurons in the output layer, one
for each class to be classified, then the test input vector is assigned to the class
corresponding to the largest output.

Due to the different scale of the features among the training corpora, we
tested different normalization techniques: the Z-Norm, Min-Max, divide by max-
imum and euclidean norm 1. The normalization has been processed by corpus
and by speakers using the Z-Norm technique. In [6] the negative impact of im-
balanced data on final result is shown. Therefore, re-sampling methods were
applied: minority class example repetition [14] for the MLP classifier and Syn-
thetic Minority Oversampling TEchnique (SMOTE) method [3] for the C4.5
classifier.

3 Results

Table 2 reports on the mean values and standard deviations of the acoustic input
features of the different corpora and sub-corpora analyzed in this work. For F0
related variables, the differences between male and female speakers are clearly
observed (μ values of f0 range go from 24.7Hz to 28.0Hz for male speakers,
but they go from 42.2Hz to 56.0Hz for female speakers). F0 values seem to be
more stable in the ESMA corpus (σ values goes from 14.6Hz to 26.3Hz) than
in the BURNC subcorpora (σ from 13.5Hz to 62.8Hz). In the case of variables
related to energy, there are also significant differences among the corpora. The
BURNC seems to be more stable with σ going from 2.2 to 6.9 RMSE/100, versus
the variability observed in the ESMA corpus, going from 4.1 to 8.5 RMSE/100.
The duration variable shows significant differences among the diverse corpora.

Table 3 shows the classification rates that are achieved when the different
corpora interchange its training and testing role. In the conventional scenarios
(same corpus for training and testing; diagonal of Table 3). The results go from
80.5 to 86.6%, which are the expected ones according to the state of the art: [12]
reports state of the art up-to-date results from 75.0% to 87.7% using the Boston



ESMA-UPC BURNC.f2b BURNC.m3b
Feature IG Feature IG Feature IG

f0 minavg diff 0.18888 f0 minavg diff 0.232 f0 minavg diff 0.245
f0 range 0.18246 f0 range 0.214 f0 range 0.232
pos 0.17347 pos 0.199 f0 maxavg diff 0.206
f0 avgutt diff 0.15215 duration 0.177 e range 0.169
f0 maxavg diff 0.10891 f0 maxavg diff 0.156 e maxavg diff 0.165
e range 0.09695 e range 0.152 pos 0.164
e minavg diff 0.08156 e maxavg diff 0.13 e minavg diff 0.15
e maxavg diff 0.07681 f0 avgutt diff 0.12 duration 0.139
duration 0.0063 e minavg diff 0.105 f0 avgutt diff 0.117

Table 4. Info Gain (IG), computed with the WEKA software, of the features when
they are used to classify the accents in the different corpora.

Radio Corpus with words as the basic reference unit. In the cross-lingual and
cross-speaker scenarios (cells out of the diagonal in the Table 3), the classification
rates decrease and they are highly dependent on the sub-corpora used. The best
and worst results are 82.7% and 69.3% in the cross-lingual scenario and 82.4%
and 74.7% in the cross-speaker scenario. All these percentages refer to the use
of decision trees that seem to be more effective than neural networks.

Table 4 compares the Information Gain of the different features, providing a
measure of the potential loss of entropy which would be generated if the splitting
of the training set was carried out in terms of the present feature [16]. The tagging
of the Spanish corpus seems to rely mainly on F0 features, as the four most
relevant features are related with F0 (except the pos feature) and the difference
with respect to the energy and duration features is important. The tagging of
the English corpus also seems to rely mainly on F0 features (f0 minavg diff

and f0 range share the top ranking position in both corpora). Nevertheless,
energy and duration seem to be more relevant for the English transcribers than
for the Spanish ones. This behaviour seems to be dependent on the speakers:
m3b gives more importance to energy than f3a. The speakers f3a and m3b

have been selected as they seem to be, respectively, the best and the worst for
predicting the Spanish accents with the C4.5 decision tree as Table 3 reports.
The feature pos appears as one of the most informative features in all the cases
(in the BURNC.m3b corpus the feature is down in the ranking but it has a high
IG value).

4 Discussion

In spite that the input features are relative magnitudes, significant differences ap-
pear between the diverse corpora (see Table 2), affecting both μ and σ. These dif-
ferences were expected, independently of the cross-lingual effect, as the different
recording conditions have a clear impact on the values of the input magnitudes.
Thus, for example, the ESMA F0 values have been collected with a laringograph
device and BURNC F0 values with a pitch tracking algorithm leading to less
stable values.



The second point for discussion arising from Table 2 is that, at the time
that differences between the Spanish corpus and the English one are clear, the
differences between the diverse English sub-corpora are also important. The
normalization of the input is thus a need in this work not only for reducing the
differences that have its origin in the recording and processing conditions, but
also for doing the cross-lingual comparison feasible. In [5], we present results
that contrast the classification rates when the input is normalized and when not
(more than ten points of accuracy can be lost in the cross-lingual scenarios).

Satisfactory classification rates seem to be obtained as reported in the pre-
vious section. The cross-lingual scenarios show lower identification rates than
those achieved in the single speaker/language scenarios. Nevertheless, this de-
crease is comparable to the one obtained in cross-speaker scenarios in spite that
the speakers were retrieved from the same corpus with similar recording condi-
tions and with the same spoken language.

The difference between inter-speaker classification rates has its origin in the
different role of the input features for characterizing the accents. This role is
dependent on the speaker as the Table 4 shows, so that the different speakers
seems to use the input features differently when producing the accents. The more
similar is the role of the input features between two given speakers the higher
the recognition rates are. This fact seems to be as relevant as the language in
which the utterance has been produced.

In [5] we analyze the most common confusions, that is, situations where the
classifier make a mistake by setting the wrong label to a given word. This analysis
was performed by comparing the predictions of the classifiers with the labels
assigned by a team of ToBI manual labelers [11]. The result is interesting because
we found that cross-lingual classifiers and mono-lingual classifiers share the most
common confusions. The most common mistake is to classify as unaccented the
L* tone which represents more than 35% of all the disagreements in both cases.
Furthermore, the four most common disagreements, representing more than 80%
of the total amount of disagreements, are shared by both classifiers. Again, the
four most common agreements representing more than the 80% of the agreements
are also the same for both classifiers. This result evidences a similar behavior of
the classifiers, and encourages for using cross-lingual labeling of prosodic event
in combination with a posterior supervised revision of the results by human
labelers in future works.

5 Conclusions and Future Work

This cross-lingual English-Spanish experiment allows to obtain promising results
both in quantitative and qualitative terms. Relative high identification rates are
achieved, while the confusions are consistent with the expectations according
to the different shape of the Spanish ToBI accent tones. The introduction of
speaker adaptation techniques, more representative input features and language
dependent information added to the normalization process are expected to im-
prove results in future work. We are currently working on the inclusion of other



more expressive input features, such as Bézier interpolation parameters and the
Tilt and Fujisaki parameters to improve results [6]. Furthermore, the inclusion
of expert fusion techniques is also being explored to improve the classification
results, as predictions of the two classifiers can be complementary in some cases.
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