
Proceedings of the International Conference
on Computational and Mathematical Methods
in Science and Engineering, CMMSE 2009
30 June, 1–3 July 2009.

Evolution of a Nested-Parallel Programming System

Arturo Gonzalez-Escribano1 and Diego R. Llanos1

1 Departamento de Informática, University of Valladolid (Spain)

emails: arturo@infor.uva.es, diego@infor.uva.es

Abstract

Pure nested-parallelism programming models are appealing due to their ease of
programming and good analysis and debugging properties. Although their simple
synchronization structure is appropriate to represent abstract parallel algorithms,
it does not take into account many implementation issues. In this work we present
key features of the evolution of a programming system based on high-level, nested-
parallel specifications. They allow to easily express complex combinations of data
and task parallelism with a common scheme, and to hide the layout and schedul-
ing details. The approach allows the development of a modular compiler where
automatic transformation techniques may exploit lower level and more complex
synchronization structures, unlocking the limitations of pure nested-parallel pro-
gramming.

Key words: High-level programming models, parallel compilers

1 Introduction

Many current high-performance scientific applications may exploit several levels of par-
allelism with different strategies of parallelization. Programmers need languages or
tools that support unified, simple and combinable parallel specifications to express
them. They should allow to capture design decisions and rely on the compiler and
run-time system to do the complex mapping associated.

The diversity and complexity of modern parallel platforms makes very difficult to
efficiently develop parallel applications in terms of the low-level concurrent program-
ming model provided by the target machine. Important decisions in the implementation
trajectory, such as choosing an scheduling scheme or a data-layout, become extremely
difficult to optimize.

Message-passing portable APIs (e.g. MPI, PVM) are widely used in high-performance
environments, as they propose an abstraction of the machine architecture, still obtain-
ing good performance. However, programming directly with these unrestricted coor-
dination models can be extremely error-prone and inefficient, as the synchronization

Evolution of a Nested-Parallel Prog. System

dependencies that a program can generate are complex and difficult to analyze by
humans or compilers [5].

More abstract and restricted programming models, such as nested-parallelism, are
becoming an important trend in parallel programming, especially for multicore and
other shared-memory platforms. Nested-parallel models represents a good tradeoff
between expressiveness, complexity and ease of programming [10]. They restrict the
coordination structures and dependencies to those that can be represented by series-
parallel (SP) task-graphs (DAGs). Thanks to the inherent properties of SP struc-
tures [11], they provide clear semantics and analyzability characteristics [6], a simple
compositional cost model [3, 9] and efficient scheduling [2]. These properties can lead
to automatic compilation techniques that increase portability and performance.

2 Previous research

Previous research in our group has produced a highly-abstract XML intermediate rep-
resentation for nested-parallel programs, named SPC-XML [4]. The sequential parts
of the code are programmed in a convenient sequential language (such as C). These
code pieces are programmed inside functions, specifying the input/output characteris-
tic of each parameter, and optional information of the asymptotic or average load of
the code based on the input sizes if needed. All this information simplifies the compiler
data-dependence analysis and the run-time system load balancing decisions.

The coordination algorithms are expressed by hierarchical XML tags. Recursive
decompositions and parallel regions are easily expressed with clear semantics free of
race conditions and dead-locks. The programmer reasons in terms of logical (not phys-
ical) processes of any granularity. Task and data-parallel programs are expressed with
similar expressions and semantics. Some attributes of the XML tags use generic names
for mapping techniques which are provided as plug-ins in the system. Thus, it is highly
extensible. Programming in SPC-XML reduces the development costs of parallel pro-
grams comparing with directly using OpenMP or MPI. However, the quality of the
automatic transformation system, and the implementation techniques included, are
the key of the efficiency of the automatic-generated executables.

3 SPC-XML development

The SPC-XML compilation system is being completely redesigned. We discuss here
key features of this new version and the related ongoing research:

Front-end language: We have developed an extension to C-language named cSPC. It
supports all the features of the SPC-XML framework. A simple front-end trans-
forms the cSPC programs to the XML intermediate representations. Figure 2
show a simple excerpt of cSPC code, with part of its associated XML represen-
tation below.

A. Gonzalez-Escribano, D.R. Llanos

parallel(matrix.shape() ; blocks ; factors2D) {
parblock: doUpdate(matrix[$P(0)-1:$P(0)+1][$P(1)-1:$P(1)+1]);

}

<parallel shape="$matrix.shape()" layout="blocks" topology="factors2D">
<parblock>

<call name="doUpdate"><params>
...

</params></call>
</parblock>

</parallel>

Figure 1: Example of a cSPC piece of code for a parallel matrix computation and a
excerpt of the associated XML representation

Three-tier parallel primitive: We have redesigned the simple and unified parallel
primitive. It has three parameters: (1) A declaration of the amount of logical
tasks to spawn in parallel, called a shape; (2) a layout function to map the logical
tasks to processors; and (3) the name of a function to generate a virtual topology
of processors. Inside the structure, the code associated to the logical tasks is
specified. It supports replication of the same code on each logical process or
different codes for each task. Thus, data and task-parallelism are supported by
the same primitive.

This new scheme clearly splits the design decisions at three different levels of
abstraction. It hiddens the low-level details of their implementation and potential
dynamic decisions inside the layout and topology functions. The programmer
never reasons in terms of the number of processors, and does not need to write
complex formula to calculate data partitions or communications.

XML transformations: In previous versions we were expanding the whole applica-
tion graph to apply data-flow analysis and detection of code structure. In the new
compilation path we have substituted it by an expression-analyzer and modules
for code transformations.

The transformation tools for the XML internal representation are guided by tem-
plates interpreted by a Xslt 2.0 processor. Xslt language has powerful tools to
detect given properties in parts of the document, and to manipulate the XML
code accordingly. Thus, many typical structural and expression transformations
are easily programmed with Xslt: Expression simplification, propagations, loop
transformations, etc. The transformations may detect opportunities to exploit
low-level synchronization structures which are non-SP. For example: By barrier
elimination, applying stencil-oriented skeletons, etc.

Back-end: The resulting XML document is translated to target code by a back-end.

Evolution of a Nested-Parallel Prog. System

Currently we provide a back-end which generates complete MPI programs in C
language ready for the native compiler.

Layout and topology modules inject information in the XML representation which
is translated as expressions or calls to run-time functions. They compute the
subparts of data structures needed on each physical processor and the data which
should be accessed synchronously or communicated across processors.

Run-time library: The generated code relies on a run-time library which has sup-
port for efficient hierarchical and cyclic tiling for multidimensional arrays, several
functions for dynamic layout, virtual topologies, scheduling, communication of
subarrays, etc.

Experimental work: To show the efficiency of the generated code, we are using cSPC
to implement standard and well tested programs, such as the NAS Parallel Bench-
marks. As their parallel structures are implemented with MPI, we may better
compare the efficiency of the generated programs and the amount of lines of
high-level code needed to exploit the parallelism.

4 Related work

Our supporting run-time library includes some similar features as other hierarchical
tiled arrays libraries (see e.g. [1]).

Pthreads and Java have nested fork-join mechanisms, but they are not particularly
convenient for expressing data parallelism or automatically manipulate the computa-
tion grain. Cilk [2] was one of the first nested-parallel systems to fully exploit the
efficient work-stealing scheduling technique, but this leads to similar grain problems.
OpenMP targets only shared-memory. It provides different programming approaches.
Synchronized parallel-for structures, teams of coarse threads, and task-queue schedul-
ings. However, specific non-SP coordination structures are difficult to be programmed
efficiently without using the non-SP mechanisms provided by the language (like lock-
variables, or sparse atomic operations).

CUDA [7] is a nested-parallel multi-threading language for all-purpose program-
ming on GPUs. The construction of parallel structures is somehow similar to our
approach. The system automatically and dynamically balances the computations hid-
ding the machine details. But the programmer should still reason with the number of
threads spawned and with the computation grain. Lacking a powerful data-flow analy-
sis, the structures of the code are not flexible and the synchronization barriers cannot be
eliminated. Thus, the programmer also have access to shared-memory communications
between grouped threads to skip the hard nested-parallel restrictions.

Intel Threading Building Blocks [8] present a conceptually similar approach, fo-
cused on data parallel intensive computations. It solves the introduction of non-SP
structures adding a limited set of common simple patterns (like pipeline) as parallel
constructors. The programmer needs to reason about more complex combinations and

A. Gonzalez-Escribano, D.R. Llanos

structures, hindering further decomposition of parallelism under the same analyzabil-
ity conditions. Concepts like our logical-processes shape and blocking-layout functions
have equivalents on Intel TBBs. However, the layouts are more limited and the block-
ing size and grain level need to rely on programmer decisions or heuristics (in version
2.0). Too coarse-grained computations may not be exploiting all parallelism; but too
fine-grained computations make the work-stealing scheduler work very inefficiently.

5 Conclusion

We have presented the key features of the current evolution of SPC-XML, a compiling
system for pure nested-parallel programming. It is based on expressing parallelism with
a simple and unified approach which hides low-level details and focus the programmer on
design decisions. The system automatically detects code suitability for different static
or dynamic scheduling techniques, and adapts the grain to the available processors.
These features are key for the easy generation of efficient programs, for distributed or
shared-memory environments, from the same portable code.

Acknowledgements

This research was partly supported by the Ministerio de Educación y Ciencia, Spain
(TIN2007-62302), Ministerio de Industria, Spain (FIT-350101-2007-27, FIT-350101-
2006-46, TSI-020302-2008-89, CENIT MARTA, CENIT OASIS), Junta de Castilla y
León, Spain (VA094A08), and also by the Dutch government STW/PROGRESS project
DES.6397. Part of this work was carried out under the HPC-EUROPA project (RII3-
CT-2003-506079), with the support of the European Community - Research Infrastruc-
ture Action under the FP6 “Structuring the European Research Area” Programme.

References

[1] G. Bikshandi, J. Guo, D. Hoeflinger, G. Almasi, B.B. Fraguela, M.J. Garzarn,
D. Padua, and C. von Praun. Programming for parallelism and locality with
hierarchical tiled arrays. In PPoPP’06, pages 48–57. ACM Press, March 2006.

[2] R.D. Blumofe and C.E. Leiserson. Scheduling multithreaded computations by work
stealing. In Proc. Annual Symp. on FoCS, pages 356–368, Nov 1994.

[3] A.J.C. van Gemund. The importance of synchronization structure in parallel pro-
gram optimization. In Proc. 11th ACM ICS, pages 164–171, Vienna, Jul 1997.

[4] A. González-Escribano, A.J.C. van Gemund, and V. Cardeñoso-Payo. SPC-
XML: A structured representation for nested-parallel programming languages. In
P.D. Medeiros J.C. Cunha, editor, Euro-Par 2005, Parallel Processing, volume
3648 of LNCS, pages 782–792. ACM, IEEE, Springer-Verlag, 2005.

Evolution of a Nested-Parallel Prog. System

[5] S. Gorlatch. Send-Recv considered harmful? Myths and truths about parallel
programming. In V. Malyshkin, editor, PaCT’2001, volume 2127 of LNCS, pages
243–257. Springer-Verlag, 2001.

[6] K. Lodaya and P. Weil. Series-parallel posets: Algebra, automata, and languages.
In Proc. STACS’98, volume 1373 of LNCS, pages 555–565, Paris, France, 1998.
Springer-Verlag.

[7] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel programming
with CUDA. ACM Queue, 6(2):40–53, Mar 2008.

[8] J. Reinders. Intel Threading Building Blocks: Outfitting C++ for Multi-core Pro-
cessor Parallelism. O’Reilly, Jul 2007.

[9] D.B. Skillicorn. A cost calculus for parallel functional programming. Journal of
Parallel and Distributed Computing, 28:65–83, 1995.

[10] D.B. Skillicorn and D. Talia. Models and languages for parallel computation. ACM
Computing Surveys, 30(2):123–169, Jun 1998.

[11] J. Valdés, R.E. Tarjan, and E.L. Lawler. The recognition of series parallel digraphs.
SIAM Journal of Computing, 11(2):298–313, May 1982.

