ATLaS: Applied Thread-Level Speculation

Version 1.1

Sergio Aldea, Alvaro Estebanez, Diego R. Llanos and Arturo
Gonzalez-Escribano

sergio@infor.uva.es, alvaroQinfor.uva.es, diego@infor.uva.es,
arturo@infor.uva.es

COMPUTER SCIENCE DEPARTMENT
UNIVERSIDAD DE VALLADOLID, SPAIN

Grupo Trasgo

Universidad de Valladolid

dl:

Departamento de

UniversidaddeValladolid Informatica

Copyright (C) 2014 Sergio Aldea Lopez, Alvaro Estebanez, Diego R. Llanos, and Arturo Gonzalez-Escribano
Trasgo Research Group. Departamento de Informatica.
Universidad de Valladolid.

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation, either version 3 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see
<http://www.gnu.org/licenses/>.

Contents

1 _Intr ion 4
2__Content of the software downloaded| 5
3 System Requirements| 5
O Tnstallation Guide 6
4.1 Installand compile GCC|, 6
MIT Knownissues 7

|4.2 Add support for the OpenMP speculative clause into GCC| 8

[Using ATLaS with your software] 8
[5.1 Command Options| 9
5.2 Running Example| 10
0.3 Knownissuesl e e e e e e e e e 11

|A" Scheduling strategies| 12
IA.l _How to use these mechanismsl 15

[B™ Papers related with ATLaS| 15

1 Introduction

ATLaS (Applied Thread-Level Speculation) is a compiler and runtime system that supports the
speculative execution of C source codes.

ATLaS allows to easily parallelize for loops that can not be analyzed at compile time and/or
present dependence violations when executed in parallel. The use of this solution do not require
any additional training with respect to the one needed to use OpenMP directives. Moreover, this
simplifies the task of classifying variables according to its usage. If unsure, the programmer may
label a certain variable to be speculative, a decision that guarantees the correct parallel execution of
the loop, possibly at the cost of a lower performance. Current state of the implementation correctly
execute in parallel loops with runtime dependence violations.

Figure[I|shows an example of (a) a sequential C loop, and (b) its parallelization with OpenMP
directives. As can be seen, all variables inside the loop body should be classified as private or
shared. Informally speaking, private variables are always defined in a given iteration before
their use, while shared variables have values that are visible by all threads executing the loop in
parallel. In our example, a[] is a read-only shared vector, while v [] is a shared vector modified at
each iteration. See [, 2, 3, 4] for further details.

Being OpenMP a simple and powerful mechanism for code parallelization, its use has several
limitations. First, the classification of all variables inside of the critical region according to their
use is a time-consuming, error-prone task. Second, OpenMP does not ensure the execution of the
code according to sequential semantics, being the programmer responsible for such task. In our
example, in Fig. [I] the programmer is responsible to ensure that each thread modifies a different
element of v[]. Third, in many cases potentially-parallel regions can not be safely parallelized
because their control flow depend on runtime data. Consider the code depicted in Fig2l Suppose
that the value of k is not known at compile time. Assuming b>O0, if the parallel execution of the

#pragma openmp parallel for \
private (i,b) shared (a,v)
for (i=0; i<MAX; i++) { | for (i=0; i<MAX; i++) {
b = func(i); b = func(i);
v[i] = b * alil; v[i] = b * alil;
} }
(a) (b)

Figure 1: Example of loop parallelization with OpenMP.

#pragma openmp parallel for \
private (i,b) shared (a,k) \
speculative(v)

for (i=0; i<MAX; i++) { | for (i=0; i<MAX; i++) {
b = func(i); b = func(i);
if (b==k) if (b==k)
v[i] = v[i-b]; v[i] = v[i-b];
else else
v[i] = b * alil; v[i] = b * alil;
by by
(a))

Figure 2: A loop that can not be safely parallelized with current OpenMP clauses (a), and its parallelization
with our new speculative clause (b).

loop calculates iteration i before iteration i-b, access to v[i-b] may return an outdated value,
breaking sequential semantics. The only way to guarantee a correct behavior would be to serialize
the execution of iterations ¢ — b and 4, a difficult task in the general case.

Our proposal consists in augmenting OpenMP with software-based, Thread-Level Speculation
(TLS) techniques, to ensure that definitions and uses of shared variables are carried out according
to sequential semantics. To do so, we define a new speculative clause. Variables labeled as
speculative will be accessed following two simple rules:

o All reads of a speculative variable will return the most up-to-date value for this variable.
This value can be either generated previously by this thread or by any of its predecessors
(threads that execute earlier iterations according to sequential semantics). This is called a
forwarding operation.

o All writes to a speculative variable will store the value in a local copy, and will check
that no successor threads (threads that are executing “future” iterations) have consumed an
outdated value of this variable. In this case, the offending thread (and possibly some of its
successors) will be stopped and re-started, in order to force them to consume the updated
value of the variable. This is called a squash operation.

As long as the values of speculative variables can be discarded due to a dependence viola-
tion, all threads maintain version copies of the speculative variables being accessed. When a
non-speculative thread successfully finishes the execution of its block of iterations, all changes are
committed to the main copy of all speculative variables.

We have modified GCC to support the new OpenMP clause speculative, and ATLaS is re-
sponsible for managing the variable classification done with this and others clauses to compile and
run the source code according to the speculative scheme described.

ATLaS is distributed under the GNU General Public License (GNU GPL).

2 Content of the software downloaded

The package contains the following directories:

e atlas: This is the script that allows us to run ATLaS. The different options to execute this
script are described in Sect. [5.1]

e doc/: This directory contains the PDF version of this document.

e gcc_updates/: This directory contains the source files that modify the compiler GCC to
support the new OpenMP speculative clause.

e specprag/: This directory contains the core of ATLaS, all the source code that implements
the compiler and runtime modules of ATLaS.

3 System Requirements

ATLaS only requires the GCC compiler, preferably version 4.6.2, to be executed. The rest of
packages required are involved with the compilation process of GCC and they will be described in
the next section. Therefore, it is necessary to install GCC (the version 4.6.2 is recommended) with
the plugin support enabled. To check this, it is needed to execute the following command and see
the corresponding output.

$ <gcc install dir/>gcc —print—file—name=plugin
<gcc_install_dir/>/lib/gcc/<architecture_and_so>/4.6.2/plugin

This path indicates the directory where the needed header files to execute plugins are located.
If the plugin support is not enabled, you only will receive the word plugin in the output.

The compiler module of our system was developed using version 4.6.2 of GCC. Any version
superior to 4.5, in which plugins were introduced, should work. However, we only ensure that the
compiler module work with version 4.6.2.

4 Installation Guide

The installation process should be done in two steps. First, you have to download, compile and
install GCC. Second, you need to replace original GCC files with source files provided in the
ATLaS package. We are going to explain how to install in the Ubuntu operating system the version
of GCC used in the development of this plugin, specifically, version 4.6.2, other versions and/or
operating systems should also work, but are not tested yet.

4.1 Install and compile GCC

First, you have to download a version of GCC from one of the official mirrors. For example, we
downloaded GCC 4.6.2 from the next URL:

ftp://www.mirrorservice.org/sites/ftp.gnu.org/gnu/gcc/gec-4.6.2/gcc-4.6.2.tar.bz2

GCC requires that various tools and packages are available for use in the build procedure. The
following packages are required:

o Another GCC compiler. This is necessary to compile the required version of GCC.
e GNAT

o GMP (libgmp3-dev in Ubuntu)

e MPFR (libmpfr-dev in Ubuntu)

e MPC (libmpc-dev in Ubuntu)

o GNU binutils

e libc6-deV]

e libtool

e GAWK
A more detailed list of the prerequisites can be found in:

http://gcc.gnu.org/install/prerequisites.html

'GCC tries to include as much compatibility as possible, so it requires by default the installation of the 32-bit
versions of /ibc. Thus, if you have a 64-bit system, install the 32-bit version of the library: libc6-dev-i386. Otherwise,
if you do not want to preserve any compatibility, you can add the flag --disable-multilib in the configure command).

ftp://www.mirrorservice.org/sites/ftp.gnu.org/gnu/gcc/gcc-4.6.2/gcc-4.6.2.tar.bz2
http://gcc.gnu.org/install/prerequisites.html

Once you have installed all the packages listed above, you need to prepare the building direc-

tory.
1. Uncompress the file downloaded into a directory called srcdir.

mkdir <gcc build dir>

mkdir <gcc build dir>/sredir

mv gcc—4.6.2.tar.bz2 <gcc build dir>/srecdir
cd <gcc_build dir>/sredir

tar —xvjz gcc—4.6.2.tar.bz2

«w v »

2. At the same level than srcdir, create a new directory called objdir.

$ mkdir <gcc build dir>/objdir

3. Configure the compilation process of GCC with the following command.

option indicates where this version will be installed.

$ cd objdir
$../srcdir/configure —enable—shared —enable—threads=posix
—enable—_ cxa_atexit —enable—clocale=gnu

—enable—languages=c —prefix=/opt/gcc—4.6.2

4. Starts the compilation. This process could take several hours.

‘ $ make bootstrap

5. Install the compiler in the directory indicated in the configuration command.

‘ $ make install

The --prefix

6. Once this process has finished, you have GCC version 4.6.2 installed in your computer. The
next step is add to this version the support for the OpenMP speculative clause.

More compilation options and a detailed documentation of this process can be found in:

http://gcc.gnu.org/install/configure.html

4.1.1 Known issues

1. If .info files cause problems, do not built them. They are not needed here and are broken

with the newest versions of makeinfo.

$ cd srcdir
$ sed —i ’'s/BUILD_INFO=info/BUILD_INFO=/’ gcc/configure

2. In addition of installing 32 bit libc dev package, the installation of gcc-4.6.2 in Ubuntu 12.04
produces sometimes a known problem that puts the files in a non standard location. This

will be solved adding to your .bashrc:

http://gcc.gnu.org/install/configure.html

export LIBRARY PATH=/usr/lib/$(gcc —print-multiarch)
export C_INCLUDE_PATH=/usr/include/$ (gcc —print—multiarch)
export CPLUS_INCLUDE_PATH=/usr/include/$ (gcc —print—multiarch)

4.2 Add support for the OpenMP speculative clause into GCC

Current implementations of OpenMP does not support Thread-Level Speculation (TLS). We have
designed a new OpenMP clause, called speculative, to support TLS into GCC. For this purpose,
it is needed to modify the following files of GCC:

$ cd gcc_updates

$ 1s

c-parser.c gimplify.c tree.c tree-nested.c
c-typeck.c omp-low.c tree.h tree-pretty-print.c

c-family:
c-omp.c c-pragma.h

Modifying GCC to add this new clause can be done in two simple steps:

1. Copy the files in directory gcc_updates into the directory that contains the original source
files of GCC.

‘ $ cp —a gcc_updates/* <gcc build dir>/sredir/gcc
2. Recompile GCC, executing the following command in the directory objdir.

$ cd <gcc_build dir>/objdir
$ make

At this point, a modified version of GCC that supports the new OpenMP clasue is installed in
your computer.
5 Using ATLaS with your software

Once you have installed our modified version of GCC, you need to accomplish a few more steps
to use ATLaS with your application. You have to follow the next steps to install ATLaS (compiler
and runtime modules):

1. Copy (or link) atlas script into the directory that contains your source code. This script
drivers the compilation of your program with the TLS library.

‘ $ cp atlas <your_application_dir>

2. Create a symbolic link to the directory specprag of the installation directory, using the same
name than the original. This directory contains the compile and runtime modules of ATLaS.

$ 1n —s <path_to_specprag> specprag

T I - . N U I SR

=3

3. Update the location of the compiler in atlas and specprag/Makefile files.

$ In atlas: COMPILERDIR=<path to the directory of the gcc—4.6.2 binary>
$ In specprag/Makefile: CC=<{path to the gcc—4.6.2 binary>

5.1 Command Options

ATLaS has several options. Mandatory arguments for long options are also required for short
options.

-t, --threads INTEGER : specifies the number of threads to execute the resulting binary file.

-b, --block INTEGER : specifies the size of each block of iterations. Either dynamic or static
approaches can be used, see appendix [A]for more information.

-p, ——maxpointer INTEGER : specifies the maximum number of elements which are specula-
tive.

-i, --maxiter INTEGER : specifies the maximum number of iterations that a speculative loop
can execute.

-m --mask INTEGER : specifies the size of the mask used.
-c, —-compile "FILE1.C FILE2.C ..." : specifies the list of source files to be analyzed.
-f, --flag "FLAG1 FLAG2 ..." : specifies the flags to compile the code.

-e, —-exec RUNFILE : specifies the name of the executable resulting of the compilation of the
user’s program.

-d, --dump : enables the dumping at various stages of processing the intermediate language tree
to a file.

-h, --help : display this help and exit.
-v, --version : output version information and exit.

Six of this options are mandatory: ——threads, --block, ~—maxpointer, —-maxiter, --mask,
and --compile. If you do not specify any of these options, ATLaS generates the following output:

You must specify the number of threads with "—t’ or '——threads’
You must specify the size of the block of iterations with '—b’ or '—Dblock’
You must specify the maximum number of speculative elements with '—p’ or
'—maxpointer’
You must specify the maximum number of iterations with "—i’ or '—maxiter’
You must specify the size of the mask with '—m’ or ’'——mask’
You must specify a C file with "—c’ or '——compile’
Usage: atlas —t "threads" —b "block" —p "maxpointer" —i "maxiter" —m "mask"
—c "filel.c"
Example: atlas —t 4 —b 50 —p 10 —i 10000 —m 127 —c "example.c"

A template for a correct execution of ATLaS could be the following:

$ atlas —threads T —block B —maxpointer P —maxiter I —mask M —c example.c

where I is the maximum number of iterations that a speculative loop can execute in the pro-
gram, T is the number of threads we want to run the program with, B is the size of the block of
iterations, P is the maximum number of elements which are speculative, and M is the size of the
mask used. These parameters are set by the programmer and they are not very tricky to set up, be-
cause they only need to know some easy features of the target loop to set maxiter and maxpointer.
For example, a loop that speculatively reads from, and writes into an array of 1000 elements, with
200 iterations, sets the value of P to 1000, and I to 200. The other three parameters, the number
of threads, the block size, and the mask size are variable and programmers can experiment with
different values until obtaining the best performance to their programs. The different strategies
implemented to schedule a loop are detailed in the appendix [A]

5.2 Running Example
The following steps resume the process of parallelizing an application with ATLaS.

1. Analyze the loop to be parallelized, classifying their variables into private, shared or specu-
lative. Any variable that could lead to a dependency violation should be classified as specu-
lative.

2. Add the OpenMP directive omp parallel for, with the corresponding clauses private,
shared, and the new speculative clause.

3. Add the function specbegin(N) before the parallel loop to specify the number of iteration
of the loop. This function initializes the structures needed for the runtime module of ATLaS.
In following versions of ATLaS, the addition of this function is expected not to be further

necessary.
1 #define MAX 100
2 #define NITER 30000
3 int i, k, aux, wvarl, var2;
4 int array[MAX];
5
6 specbegin (NITER) ;
7
8 #pragma omp parallel for default (none) schedule(static) \
9 private (i, k, aux) \
10 shared (array) \
11 speculative (varl, var2)
12 for (1 =0 ; i < NITER ; i++) {
13
14 if (i == 3000) { k = var2; }
15 if (i == 600) { k = wvarl; }
16
17 for (k = 0; k < array[i % MAX] + NITER; k++) {
18
19 if (k >= 29900) { var2 = k + array[(i + k) % MAX]; }
20 if (k <= 200) { varl = arrayl[i % MAX]; }
21 aux = (k + NITER) % 100000;
2 }
23
24 if (i == NITER—1) { wvar2 = varl; }
25 }

In this case, var1 and var?2 are speculative because they are read and written, therefore they
may produce dependence violations.

4. Execute ATLaS with the right values for each argument. Details for each argument are found
in the previous section.

10

ATLaS produces the following output for the code example shown:

83 ok ok K ok ok oK KK oK K K oK oK K ok oK oK oK oK K K KoK K K oK oK K oK Kk oK oK K K K
Analyzing ‘main()’ ...

s ok ok K ok ok oK K ok oK K K ok oK K K oK K oK oK K K oK oK K K oK K oK oK KK oK oK kK K K

Adding specinit () at the beginning of the function.

OpenMP pragma omp PARALLEL detected in line 69!
Another kind of clause
Private Clause: ’'1i’
Private Clause: 'k’

10 Private Clause: ’aux’

11 Shared clause: "array’

12 Speculative clause: ’j’

13 Speculative clause: ’1’

© % NN AW =

15 Searching FOR directive associated with the PARALLEL directive...

16 Number of speculative variables = 2
17 Variable : j. Type: int.
18 Variable : 1. Type: int.

19 Replacing original FOR loop for a speculative version...

= 1;

= J;

D.3239 + k;

= array[D.3242];
= Ji

= D.3324;

21 Reading from speculative variable:
22 Reading from speculative variable:
23 Writing into speculative variable:
24 Writing into speculative variable:
25 Reading from speculative variable:
26 Writing into speculative variable:
27 Adding engine’s functions pre—loop

e
I

29 Plugin finished in function ’'main()’.

5. ATLaS generates a binary file functionally equivalent to the original application whose exe-
cution will run in parallel using the number of threads specified in the compilation.

The execution of this file prints in first place a resume of the values selected for each option
of ATLaS.

5.3 Known issues

Sometimes a compile-time error is produced while compiling an application with ATLaS similar

to:
11

non-spec most-spec
thread thread

Chunk numbers I 5 6 7 8 9 10 11 12 13 ...
Chunk sizes 25 |28 | 33 |40 | 54 | 69 | 89
Execution counters 1 1 1 2 1 1 1
| LastTthreads

Figure 3: Just-In-Time dynamic scheduling, conservative approach.

Currently, we are working to overcome this error. However it can be easily solved changing the
order of the OMP clauses, e.g., if we defined #pragma omp parallel for default(none) we
should modify it with #pragma omp default(none) parallel for, and it will probably work.

A Scheduling strategies

When specifying sizes to the iterations chunks chosen to be speculatively executed, either a static,
or a dynamic strategy can be taken. The steps to follow when the static scheduling is desired are
well described in the previous installation guide: users only have to specify the positive number of
iterations through the parameter -b when compiling. Dynamic scheduling is a more complex way
to fix the number of iterations because it varies dynamically depending on several factors such as
dependence violations produced or the place that a given iteration occupies in the whole set. The
main advantage of static solutions is that no calculations have to be done in order to obtain the
next chunk size, however they have to be carefully tuned through experimentation so that a good
performance can be achieved. Figure [3]shows an example of this kind of scheduling. Below are
detailed the dynamic scheduling approaches implemented in ATLaS.

o Meseta scheduling. This approach follows the assumption that dependence violations are
located in the initial iterations of loops. Therefore, it dynamically increase sizes given ac-
cording to the number of iteration to execute until achieving a fixed limit when sizes are
static. In addition, when iterations to execute are closely to the end of the loop, sizes are
decreased in order to leverage as much as possible the threads in execution. Figure 4{ shows
the evolution of the size of the chunk of iterations given in an execution. More details of
this strategy can be found in [6].

e Just-In-Time scheduling. This strategy takes into account the number of re-executions
performed in the previous threads, the number of iterations of the loop, and the number of
the first iteration to be executed in order to obtain the size of the next chunk of iterations.
This approach has two flavours, one more optimistic which let sizes to high faster, and
another which increase slower the sizes given. Functions showed in the figure [5| details this
description. More details of this strategy can be found in [[7].

e Moody scheduling. This approach tries to obtain the best size of chunk each time mainly
taking into account the number of times that the last chunks have been squashed and re-

12

A Chunk

size

>
Chunk number

Figure 4: Meseta scheduling.

O — lrln(i).ln(N)—‘ O — lrln(i)g(-ir)l(N)—‘

(a) (b)

Figure 5: Functions that define Just-In-Time scheduling.

13

Number of executions

Chunk number

Figure 6: Moody scheduling approach.

Table 1: Changes on the following chunk sized according to the tendency d and the mean of re-executions
meanH parameters. The label maxMeanH refers to the highest number of executions acceptable, and
accMean H refers to a number of acceptable re-executions.

executed due to dependence violations, the average number of executions of the last chunks,
and the tendency of these re-executions, i.e., whether previous executions tend to produce
dependence violations or not. This solution also requires programmers to define some pa-
rameters to set how optimistically decrease, or increase, sizes of iterations. Moreover, users
have to define the average number of re-executions considered acceptable, the number of
previous threads to take into account in the calculations, and the size of the first iteration
to initialize the scheduler. These parameters can be modified in the file dynScheduler.h, 1o-
cated in specprag. Figure [6] and table [I| describe how this solution works. More details of
this strategy can be found in [3]].

Both Just-in-Time and Moody scheduling have also two approaches to develop their task. If
no dependences arose during the parallel execution, the size of the following chunk would be
calculated only once, that is, just before issuing its execution. Otherwise, if the execution of the
chunk fails, it gives the runtime system an opportunity to adjust its calculation by calling the
scheduling function with updated runtime information. This leads to two different ways to use the
scheduling function:

1. To calculate the size of the following chunk only the first time this particular chunk will be
issued. Subsequent re-executions will keep the same size.

2. To re-calculate the size of the following chunk each time the chunk is scheduled. This
solution is called adaptive scheduling.

The advantage of adaptive over dynamic scheduling is that the first calculation of the chunk
size may rely on incomplete information, since some or all of the previous chunks are still being
executed, and therefore they may suffer additional squashes. Adaptive scheduling will always

14

reconsider the situation using updated data. Naturally, this comes at the cost of additional calls to
the scheduling function.

Al

How to use these mechanisms

As seen previously, using static scheduling only requires to set the size with the parameter -b. The
dynamic flavour of scheduling can be used in a similar way through the use of negative numbers.

Thus,

the following numbers define each mechanism implemented so far.

-1: To use the Meseta scheduling.

-2: To use the dynamic standard version of the Just-in-Time scheduling with the function
which increases slower.

-3: To use the dynamic adaptive version of the Just-in-Time scheduling with the function
which increases slower.

-4: To use the dynamic standard version of the Just-in-Time scheduling with the function
which increases faster.

-5: To use the dynamic adaptive version of the Just-in-Time scheduling with the function
which increases faster.

-6: To use the dynamic standard version of the Moody scheduling.

-7: To use the dynamic adaptive version of the Moody scheduling.

B Papers related with ATLaS

An OpenMP extension that supports thread-level speculation. Sergio Aldea, Alvaro
Estebanez, Diego R. Llanos, Arturo Gonzdlez-Escribano. IEEE Transactions on Parallel
and Distributed Systems, 2015.

New Data Structures to Handle Speculative Parallelization at Runtime. Alvaro Es-
tebanez, Diego R. Llanos, Arturo Gonzdlez-Escribano. International Journal of Parallel
Programming, 2015.

Compile-Time Support for Thread-Level Speculation. Sergio Aldea. PhD thesis, Val-
ladolid, Spain. July, 2014.

Support for Thread-Level Speculation into OpenMP. Sergio Aldea, Diego R. Llanos,
Arturo Gonzélez-Escribano. Proceedings of the 8th International Workshop on OpenMP
(IWOMP 2012), Rome, Italy, June 11-13, 2012. Springer, Lecture Notes in Computer Sci-
ence, 2012, Volume 7312, ISBN 978-3-642-30960-1, pages 275-278

Extending OpenMP to support speculative execution. Sergio Aldea, Diego R. Llanos,
Arturo Gonzalez-Escribano. HPC-EUROPA?2 project (project number: 228398) with the
support of the European Commission - Capacities Area - Research Infrastructures. 2012.

15

References

[1] OpenMP specification, version 4.0. http://www.openmp.org/mp-
documents/OpenMP_4.0_RC2.pdf.

[2] Rohit Chandra, Ramesh Menon, Leo Dagum, David Kohr, Dror Maydan, and Jeff McDonald.
Parallel Programming in OpenMP. Morgan Kaufmann, San Francisco, California, USA, 1
edition, October 2000.

[3] Leonardo Dagum and Ramesh Menon. Openmp: An industry-standard api for shared-memory
programming. I[EEE Comput. Sci. Eng., 5(1):46-55, January 1998.

[4] Leonardo Dagum and Ramesh Menon. OpenMP: an industry standard API for shared-memory
programming. IEEE Computational Science & Engineering, 5(1):46-55, March 1998.

[5] Alvaro Estebanez, Diego R. Llanos, David Orden, and Belen Palop. Moody scheduling for
speculative parallelization. In Proceedings of the 21th International Conference on Parallel
Processing, Euro-par’ 15, Berlin, Heidelberg, 2015. Springer-Verlag.

[6] Diego R. Llanos, David Orden, and Belén Palop. Meseta: A new scheduling strategy for spec-
ulative parallelization of randomized incremental algorithms. In Proc. 2005 ICPP Workshops
(HPSEC-05), pages 121-128, Oslo, Norway, June 2005. ISBN 0-7695-2381-1, IEEE Press.

[7] Diego R. Llanos, David Orden, and Belen Palop. Just-in-time scheduling for loop-based spec-
ulative parallelization. In PDP 2008, pages 334-342, 2008.

16

	Introduction
	Content of the software downloaded
	System Requirements
	Installation Guide
	Install and compile GCC
	Known issues

	Add support for the OpenMP speculative clause into GCC

	Using ATLaS with your software
	Command Options
	Running Example
	Known issues

	Scheduling strategies
	How to use these mechanisms

	Papers related with ATLaS

