CHAPTER 1

The All-Pair Shortest-Path Problem in
Shared-Memory Heterogeneous Systems

HECTOR ORTEGA-ARRANZ, YURI TORRES, DIEGO R. LLANOS, PH.D., AND
ARTURO GONZALEZ-ESCRIBANO, PH.D.

Departamento de Inforatica, Universidad de Valladolid, Spain.

This chapter faces the All-Pair Shortest-Path problem for sparse graphs combin-
ing parallel algorithms and parallel-productivity methods in heterogeneous sys-
tems. As this problem can be divided into independent Single-Source Shortest-
Path subproblems, we distribute this computation space into different processing
units, CPUs and graphical processing units (GPUs), that are usually present in
modern shared-memory systems. Although the powerful GPUs are significantly
faster than the CPUs, its combined use leads to better execution times. Further-
more, two different policies have been used for the scheduling issue, an equitable
scheduling, where the workspace is equitably divided between all computational
units independently of its nature, and a work-stealing scheduling, where a com-
putational unit steals a new task when it has finished its previous work.

Keywords: APSP, Dijkstra, GPUs, Heterogeneous Systems, Load-Balancing

(The All-Pair Shortest-Path Problem in Shared-Memory r&feneous Systems, ed.). 1
By Hector Ortega-Arranz, Yuri Torres, Diego R. Llanos andu#o Gonzalez-Escribano
Copyright(©) 2013 John Wiley & Sons, Inc.



2 THE ALL-PAIR SHORTEST-PATH PROBLEM IN SHARED-MEMORY HETEROGENEOUS SYSTEMS

1.1 Introduction

Many problems that arise in real-world networks imply thenpaitation of shortest
paths and their distances from any source to any destinptort. Some exam-
ples include traffic simulations [1], databases [2], In&tmoute planners [3], sensor
network [4] or even the computation of graph features as éetwess centrality
[5]. Algorithms to solve shortest-path problems are corapaihally costly, so, in
many cases, commercial products implement heuristic agpes to generate ap-
proximate solutions instead. Although heuristics are lg@@ster and do not need
much amount of data storage or precomputation, they do reovgtee the optimal
path.

The All-Pair Shortest-Path (APSP) problem is a well-knowabtem in graph
theory whose objective is to find the shortest paths betwegpair of nodes. Given
a graphG = (V, E) and a functionw(e) : e € E that associates a weight to the
edges of the graph, it consists in computing the shortebisifat all pair of nodes
(u,v) : u,v € V. The APSP problem is a generalization of the classical protif
optimization, the Single-Source Shortest-Path (SSSB)ctinsists in computing the
shortest paths from just one source nede every node € V. If the weights of the
graph range only in positive values(e) > 0 : e € E, we are facing the so-called
Non-negative Single-source Shortest-Path (NSSP) problem

There are two ways to solve the APSP problem. The first solutido execute
|V| times a NSSP algorithm selecting a new node as source in taation. The
classical algorithm that solves the NSSP problem is Digstalgorithm [6]. The
second solution is to execute an algorithm that globallyeothe APSP problem
using dynamic programming, as the Floyd-Warshall algoriffi, 8]. The former
approach is used for sparse graphs whereas the latter is effaient for dense
graphs.

In this chapter we are going to face the APSP problem for spgnaphs combin-
ing parallel algorithms and parallel-productivity metlsad heterogeneous systems.
The first level of parallelism we have used is the paralléliraof Dijkstra’s algo-
rithm. The néve Dijkstra’s algorithm is a greedy algorithm whose effiig is based
in the ordering of previously computed results. This feamakes its parallelization
a difficult task. However, there are certain situations whgaurts of this ordering
can be permuted without leading to wrong results neithefopmance losses. The
second level of parallelism exploited is the executiorji6f simultaneous parallel
algorithms. As the APSP problem can be divided into indepah®SSP subprob-
lems, we distribute the computation space into differentessing units.

An emerging way of parallel computation includes the use afltvare accel-
erators, such as graphic processing units (GPUs). Theiegolwcapability have
triggered their massive use to speed up high-level pa@ielputations. High-level
languages for parallel-data computation, such as CUDA{#]@penCL [10], ease
the general purpose programming for these heterogenestesywith GPUs. The
application of GPGPU computing to accelerate problemde@élaith shortest-path
problems have increased during the last years. Some GPlgsimepted solutions
to the NSSP problem have been previously developed in [1,113Rusing some
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modifications of Dijkstra’s algorithm. The latter algomthis the parallel implemen-
tation that we have used as the first level of parallelism lier GPU units in our
heterogeneous system.

The new generation of high performance computing (HPC)dseto assemble
different kinds of multi-core CPU and many-core GPUs in thms heterogeneous
computing system. The goal of heterogeneous environmerits jointly exploit
all computational capabilities of devices with differemartiware-resource configura-
tions. The different nature of these heterogeneous coripoighunits (HCU) makes
necessary to implement the same algorithm in different waysrder to take the
maximum profit of each underlying architecture. Howevahalgh each HCU has
its own optimized code implementation, usually some of tisetae a problem faster
than others due to its different resource sets. In order ft@mfmathis imbalance and
to maximally exploit the heterogeneous systems, diffemgthods of load balancing
can be applied. One of this techniques is to assigh more wedihet most powerful
HCU, for our case the GPUs, and the remaining work to the atiomal CPUs.

Load-balancing is one of the challenging problems which@&aat®@mendous im-
pact on the performance of parallel applications, espgdialheterogeneous envi-
ronments. The objective of load-balancing methods is ttridige the workload
proportionally according to the computational power of thevices. In this way,
these methods allow to avoid device overloads when otherslk. However, in or-
der to obtain a good performance exploiting heterogenegismss, the programmer
needs to manually implement these load-balancing methods.

In this chapter we present parallel solutions for the APS#blem for hetero-
geneous systems composed by GPUs and CPU-cores that inmplemoedifferent
load-balancing methods. The used GPU devices have twd Etelsitectures re-
leased by CUDA (Fermi and Kepler). Our experimental reshtsw that the use of
a heterogeneous environment for the APSP problem imprqvés 65 percent the
execution time compared to the fastest GPU execution uskedsadine.

The rest of this chapter is organized as follows. Sectionntr@duces some basic
concepts and notations related to graph theory, and brieffgribes both the se-
quential Dijkstra’s algorithm and the parallel version dis&ection 1.3 introduces
some details for both Fermi and Kepler CUDA architecturescti®n 1.4 describes
an introduction to the heterogeneous systems and how tteblalancing techniques
try to improve their performance distributing the work lo&kction 1.5 explains in
depth our Dijkstra GPU-implementation using the ideas gt in [14] and our
heterogeneous implementations with different load-t@repmethods. Section 1.6
poses the experimental methodology and used platform,endhput sets consid-
ered. Section 1.7 discusses the results obtained. Fisaht. 1.8 summarizes the
conclusions we have obtained.
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1.2 Algorithmic Overview

1.2.1 Graph Theory Notation

We will first present some graph theory concepts and notatiglated to the shortest-
path problem. A grapli = (V, E) is composed by a set of vertic&s also called
nodes, and a set of edgeés also called arcs. Every vertexis usually depicted as a
point in the graph. Every edgeis usually depicted as a line that connects two and
only two vertices. An edge is a tuple, v) that represents a link between vertieces
andv. The number of edges connected to a vertéx called thedegreeof v. In an
undirected graplall edges can be traversed in both directions, whereas aedg)
of a directed graphonly can be traversed from to v. There is a weight function
w(u,v) associated to each edge, that represents the cost of traytie edge.
ApathP = (s,...,u,...,v,...,t)is asequence of vertices connected by edges,
from a source vertex to a target oné. Theweightof a path,w(P), is the sum of all
the weights associated to the edges involved in the pathshbeest pattbetween
two verticess andt is the path with the minimum weight among all possible paths
betweens andt. Finally, the minimum distance betweerandt, d(s, ¢) or simply
d(t), is the weight of the shortest path between them. We def(ete), or simply
d(t), to a temporal tentative distance betweemnd¢ during the computation af(¢).

1.2.2 Dijkstra’s Algorithm

The basic solution for the NSSP is Dijkstra’s algorithm [6his algorithm constructs
minimal paths from a source nodé¢o the remaining nodes, exploring adjacent nodes
following a proximity criterion.

The exploring process is known adge relaxation When an edgéu, v) is re-
laxed from a node, it is said that node has beemeached Therefore, there is a
path from source througtto reachv with a tentative shortest distance. Nadwiill
be consideredettledwhen the algorithm has found the shortest path from source
nodes to v. The algorithm finishes when all nodes are settled.

The algorithm uses an array), that stores all tentative distances found from
source node to the rest of nodes. At the beginning of the algorithm, everge is
unreached and no distances are knownp$d = oo for all nodesi, except current
source nodé[s] = 0. Note that both reached and unreached nodes are considered
unsettled nodes.

The algorithm proceeds as follows:

1. (Initialization) The algorithm starts on the source nedaitializing distance
array D[i] = oo for all nodesi and D[s] = 0. Nodes is considered as the
frontier nodef (f « s) and itis settled.

2. (Edge relaxation) For every nodeadjacent tof that has not been settled, a
new distance from source is found using the path throtighith value D[ f] +
w(f,v). Ifthis distance is lower than previous valligv], thenD[v] < D[f]+
w(f,v).
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3. (Settlement) The nodewith the lowest value irD is taken as the new frontier
node (f + u). After this, current frontier nod¢ is now considered as settled.

4. (Termination criteria) If all nodes have been settledaigerithm finishes. Oth-
erwise, the algorithm proceeds to step 2.

In order to recover the path, every node reached storesdtiepessor, so at the
end of the query phase the algorithm just runs back from téngeugh stored prede-
cessors till the source node is reached. 3hertest path treef a graph from source
nodes is the composition of every shortest path freno the remaining nodes.

1.2.3 Parallel Version of Dijkstra’s Algorithm

Dijkstra’s algorithm, in each iteratiofy calculates the minimum tentative distance
of the nodes belonging to the unsettled $&t, The node whose tentative distance
is equal to this minimum value can be settled and becomesdnédr node. Its
outgoing edges are traversed to relax the distances of jheead nodes.

In order to parallelize the Dijkstra algorithm, it is neededdentify which nodes
can be settled and used as frontier nodes at the same timeidda®f inserting
into the frontier setF;. 1, all nodes with this minimum tentative distance in order
to process them simultaneously was implemented for GPUELlj A more aggres-
sive enhancement was introduced in [14], and later impléatefor GPUs in [13],
augmenting the frontier set with nodes with bigger tengatlistance. The algorithm
computes in each iteration for each node of the unsettled set,c U;, the sum
of: (1) its tentative distancéu), and (2) the minimum cost of its outgoing edges,
Anode, = min{w(u, 2) : (u,z) € E}. Afterwards, it calculates the minimum of
these computed values. Finally, those nodes whose temtdigtance are lower or
equal than this minimum value can be settled becoming thetiéoset.

1.3 CUDA Overview

Graphics processing units started as image processingegevOver the years, the
GPUs have increased in performance, architectural cortylexd programmabil-
ity. Currently, these devices are widely used for genergd@se computing (GPGPU)
[15] due to the performance improvements achieved on nhelkijnd of parallel ap-
plications.

CUDA (Compute Unified Device Architecture) [9] is the paehltomputing ar-
chitecture developed by Nvidia Company for general purgg#ications. CUDA
simplifies the GPGPU programming by means of high level ARl ameduced set
of instructions.

Fermi [9] is the second generation of CUDA architectureantded on early
2010, and the latest generation of CUDA architecture is &e[l6], released on
early 2012. Table 1.1 summarizes the Fermi and Kepler’s efznacteristics. Each
new architecture generation has increased the number ¢B&@aming Processors),
and the maximum number of threads per SM (Streaming Multgssor). The main
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change introduced by Fermi is a transparent L1/L2 cacheatuey that has been
maintained in Kepler. However, the sizes and configuratassibilities are different.
The global memory is organized in several banks. The numbkamks has been
decreased on Fermi and Kepler. Finally, the main featurednted by Kepler is
the next generation of Streaming Multiprocess®M) with 192 single-precision
CUDA cores, four different warp schedulers and two dispaituits.

Table 1.1 Summary of CUDA architecture parameters (Fermi and Kepler)

Parameter Fermi Kepler

SPs (per-SM) 32 192

Max. number of blocks (per-SM) 8 16

Max. number of threads (per-SM) 1536 2048

Max. number of threads (per-block) 1024 1024

L2 cache 768 KB > 512 KB

L1 cache (per-SM) 0/16/48 KB 0/16/32/48 KB
Size of global memory transaction 32/128 B 32/128 B
Global memory banks 5-6 4

1.4 Heterogeneous Systems and Load-Balancing

Heterogeneous computing [17] tries to jointly exploit diffnt kind of computational
units, such as, GPUs, FPGAs or CPU-cores. Compared toitraalit symmetric
CPUs, this computing paradigm offers higher peak perfoaeamhile being both
energy and cost efficient. However, programming for hetenegus environments
is a tedious task and has a long learning curve. The auth$t8jrshow the impor-
tance and the high interest of heterogeneous environmedts@v a heterogeneous
environment could improve significantly certain kind of el problems.

Load-balancing methods for heterogeneous systems trgtigdite the work load
between any computing unit to exploit all available hardevaasources. There are
several load-balancing methods not only for traditionatems, but also for hetero-
geneous systems. A brief classification is presented bellow

In [19] the authors create dependence graphs in order teifglass dependent
or independent the application tasks. More independeks @® launched to GPU
devices in order to reduce the costly data transfers betR&drexpress bus.

The work in [20] presents a model to estimate the possiblewtian time of each
task (number of instructions and input data size), and tteside which hardware
would be the best for each case. The size of each single téigkdsat compilation
time. In [21] the author calculates the data transfer tinte/ben the different devices
(GPUs and CPUs), and creates a model in order to reduceGfter-and CPU-
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Algorithm 1.1

GPU implementation of Dijkstra’s algorithm  {
(01) <<<initialize>>> (U,F,¥);
(02) while (A #o0) {

(03) <<<relax>>> (U, F,0);
(04) A =<<<m ni mum>>> (U, 0);
(05) <<<update>>> (U, F, 4, A);
(06) 1}

}

GPU communication. In [22] the authors collect all the infiation of each GPU
hardware. By means of CUDA API and a model created by the asitbiwey select
a good device for a given task.

For a given set of tasks with preset sizes in [23], the authssgyn bigger task to
more powerful devices. On the other hand, [24], for a spepifiblem, assign tasks
with a similar size to the same device in order to equilibthiee communication
imbalance factor.

A static load balancing appears when all tasks are avaitalsiehedule before any
real computation starts. From the previously mentionedksj0i21], [25], present
static load-balancing techniques. The opposite is themjmbad balancing. Now,
the tasks are not known until mid-execution and new ones papa. From the
previously mentioned works, [26], [23], [27], and [24] pees a dynamic load-
balancing.

1.5 Parallel Solutions to the APSP

This section describes both the single GPU parallel implgat®n used as baseline
and the different heterogeneous approaches implemensetimthe APSP problem.

1.5.1 GPU Implementation

We have used the implementation described in [13] for the @GRit$ of our hetero-
geneous system. It is an adaptation of the sequential Edjksdlgorithm described
in Sect.1.2.2 to the CUDA architecture (see Algorithm 1dljofving the parallel
enhancements of [14]. It is composed of three kernels thatiggs the internal
operations of the Dijkstra vertex loop:

= Therelax kernel(invoked in line 3 of Algorithm 1.1) decreases the tentative
distances for the remaining unsettled nodes of the curterdtion: through
the outgoing edges of the frontier nodgss F;. A GPU thread is associated
for each node in the graph. Those threads assigned to frowdes,f € F;,
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traverse their outgoing edges, relaxing the distancesef timsettled adjacent
nodes.

Theminimum kernefline 4 of Algorithm 1.1) computes the minimum tentative
distance of the nodes that belong to theset. To do so, the advancestiuce3
method of the CUDA SDK [28] has been modified to accomplisé dipieration.
Our minimum kerneis adapted in order to: (1) add the correspondiyg e,
value tod(v), and (2) compare its new assigned values to obtain the mmimu
one. The resulting value of thminimum kerneis the A;.

Theupdate kerne{line 5 of Algorithm 1.1) settles those nodes frafmmwhose
tentative distances are lower or equalX@ This task is carried out extracting
them from the following-iteration unsettled séf;,;, and putting them to the
following-iteration frontier setF; ;. Each single GPU thread checks, for its
corresponding node, whether U (v) and §(v) < A;). If so, the thread assigns
v to F; 1 and deletes from U, 41.

The nodes are numbered fram..n — 1. Besides the basic structures to hold
nodes, vertices, and their weights, three vectors are define

= VectorU, that stores i/ [v] whether node is an unsettled node.

= Vector F, that stores irF'[v] whether node is a frontier node.

= Vectord, that stores i [v] the tentative distance from source to nede

1.5.2 Heterogeneous Implementation

The solution of the APSP through the V-NSSP approach allssvioulivide the
problem in|V| independent tasks. Numbering the nodes of the graph frdm
|V| — 1, the task; solves the NSSP problem that has the nods source.

1.5.2.1 Equitable Scheduling A simple way to apply load-balancing to a het-
erogeneous system is to equitably distribute the work withiaking into account
the computational capabilities of the devices. This kindechniques usually lead
to easy implementations, but at the expense of having a tethpost equal to the
time that the worst device needs to compute its work. Eqlgit8icheduling can be
classified as a static load-balancing technique at conipike t

Our Equitable Scheduling (ES) approach statically divitiesvorkspace between
the computing threads giving to each one the same quantifsks. Ifnc represents
the number of computing threadsd,the thread identifier, andt = |V'|/nc the num-
ber of tasks per thread, this approach makes each threaahsgisie for computing
the tasks fromid - nt toid - nt + nt — 1. If this task division is not exact, each of the
first threads takes one of the remaining tasks until there imare work to do.
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Algorithm 1.2
Work-stealing implementation{
(01) #paral | el /+ Parallel region */
(02) if (idThread < nunGPUs) { /* For GPUs */
(03) sel ect GPU(i dThr ead) ; /+ GPU sel ection =/
(04) atomc{ t = steal work(taskQueue) };
(05) while( t !'= NULL ){
(06) I aunch_GPU_Ker nel (t);
(07) atom c{ t = steal work(taskQueue) };
(08) Hlwhile
(09) tel se{ /+ For CPU-cores =/
(10) atomc{ t = steal work(taskQueue) };
(11) while( t !'= NULL ){
(12) | aunch_CPUKer nel (t);
(13) atomc{ t = steal work(taskQueue) };

(14) Hlel se
(15) #end parall el

1.5.2.2 Work-Stealing Scheduling ~ Work-stealing is one of the most important
techniques of load-balancing. It is commonly employed tooatplish a dynamic
work scheduling between any kind of hardware device. Althare devices of the
heterogeneous system can steal a task from the global t&slequNote that the
access to the global task queue must be implemented with kmdeof synchro-
nization in order to avoid that two or more devices steal thmes task. Usually,
this synchronization involves a bottleneck in the executimes. Work-Stealing
scheduling can be classified as a dynamic load-balancihgigee at runtime.

Our Work-Stealing Scheduling (WS) approach lets to an idleati that has fin-
ished its previous work to steal the following taisk This task is immediately elim-
inated from the queue at the moment it is taken. Then, theathoemputes the
corresponding NSSP problem with nodas source. Finally, when the thread ends
its work, it comes back to the global task queue in order te tatother one, repeat-
ing the process till there is no more pending work. The syowization of the task
stealing has been implemented using an atomic region. Thahsthat only one
thread can be taking the following work at any moment.

Algorithm 1.2 is the pseudocode of work-stealing technitusolve the APSP
problem. The02 and 09 lines indicate that the first threads are assigned to GPU
devices and the rest to CPU-cores. TaskQueusstores the list of all tasks, and the
atomic{} primitive creates an exclusion region to avoid a simultaisestealing of
the same task from different idle threads.
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1.6 Experimental Setup

We will first describe the methodology used for our experitagas well as the input
set problems and the load-balancing techniques evaluated.

1.6.1 Methodology

We have compared our heterogeneous implementations agaénsingle GPU im-
plementation, that we have denominated baseline, in oolevdluate the perfor-
mance gain of using heterogeneous systems for the partis®8P problem. The
algorithm implemented for GPU devices is an adaptation4fideas for the CUDA
architecture presented in [13]. Moreover, the sequengggion of this algorithm is
used for the CPU devices.

Furthermore, several instances with different number oér@P threads, for
both load-balancing methods presented, have been exeicuteder to determine
the best configuration. These instances have been testednajihs ofl - 22° nodes
solving the complete APSP problem. Additionally, we havedi®r our experiment
graphs whose number of nodes is ranging fior2?® to 11 -22°. However, due to the
large amount of computational load needed to solve the ARSRese graphs, we
have bounded the problem t&&2-source-nodes-to-dlh order to reduce the global
execution time. For the selection of these source nodes we Used the random
functionsrand48()from the C libraries.

1.6.2 Target Architectures

The evaluated heterogeneous system is composed by diffeyerputational units
that are grouped in two categories:

= The shared-memory CPU system, the host machine, is anRy@€t§re(TM) i7
CPU 960 3.20 GHz, 64-bits compatible, with a global memorg &B DDRS3,
with two GPUs.

= The GPU system has two GPU devices of different architesture

— a GeForce GTX 680 (Kepler) Nvidia GPU device, and
— a GeForce GTX 480 (Fermi) Nvidia GPU device.

The evaluated baseline implementation is executed in time Shared-memory
host machine of the previously described heterogeneotsmnsybut it only uses one
GPU device as computational unit, that is GeForce GTX 68@Ig® GPU device.

Regarding the software used, the host machine runs an UBUD&g4top 10.10
(64 hits) operating system, and the experiments have baaohad using CUDA 4.2
toolkit and the 295.41 64-bit driver.



EXPERIMENTAL SETUP 11

60

50 femmpmmsen procmeme 1

40 | 1

30

20 | :

Time(milliseconds)

10 - :

0 10000 20000 30000
Average time execution of groups of 32 NSSP

Figure 1.1 Temporal cost of the different source nodes in the graph for théeK&PU.

1.6.3 Input Set Characteristics

The input set is composed by a collection of graphs randoeeated by a graph-
creation tool used by [11] in their experiments. They havenbereated adding seven
adjacent predecessors to each node of the graph. Afterviheyshave inverted the
graphs in order to store the node successors sequentidlgseTgraphs are repre-
sented through adjacency lists, the nodes are numberedOfroniV’| — 1, and the
edge weights are integers that randomly range ftom 10.

The node distribution of this kind of graphs shows an irragllehavior for the
computational time of the APSP problem in terms of each NS&ipreblem. The
iterations of the first nodes of the graph need more compuiaititime to solve its
NSSP problem than the final ones. Figure 1.1 shows, usingvaiseof 32 nodes,
how the time needed is considerably reduced as long as teérmmsnplementation
gets closer to the final nodes. Due to the nature of the prqtilesne are no inter-
NSSP dependences and communication in the complete APSputation.

1.6.4 Load-balancing Techniques Evaluated

Both load-balancing techniques described, equitabledsdimg and work-stealing,
have been implemented with support to different number crdfP threads. Sev-
eral instances with different number of threads have bealuated against the base-
line implementation.

We have tagged each instance, depending which load-batatethnique im-
plements, with the label “E” for equitable scheduling imstas, and “W” for work-
stealing scheduling instances, followed by a number thatsents the number of
OpenMP threads used (see Table 1.2). Thus, the evaluatadées “B” and “Wy”
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Table 1.2 Experimental instances

Legend Description

Gy Single GPU thread (Kepler)

Es / W, 2 GPU threads (Fermi & Kepler)
Es / W3 2 GPU threads + 1 CPU threads
Es /Wy 2 GPU threads + 2 CPU threads
E¢ / Wg 2 GPU threads + 4 CPU threads
Eg / Wg 2 GPU threads + 6 CPU threads
E;s /W4 2 GPU threads + 12 CPU threads
Eig/ Wi 2 GPU threads + 14 CPU threads

are a implementation of Equitable Scheduling with 3 threstt$ a implementation
of Work-Stealing scheduling with 8 threads respectively.

The first two threads are always assigned to the two GPU haeddevices, one
for each graphic accelerator. The rest of the threads aisetin the CPU-cores.
Therefore, the instances sEand “W," only use the GPUs resources with the cor-
responding load-balancing technique.

1.7 Experimental Results

In this section we present the experimental results ohtidioiethe execution of the
complete APSP with)/| = 1-220 and the 512-source-to-all for graphs which number
of nodes ranges frorm- 220 to 11 - 220,

1.7.1 Complete APSP

1.7.1.1 Equitable Scheduling  Figure 1.2a presents the execution times of equi-
table scheduling technique for instances with differemhbar of OpenMP threads.
The performance of the baseline approach)(S significantly improved when a
second GPU device is useds(E However, a % speed-up is not reached because
the architectures of the used GPUs are different. This mtreighe total execu-
tion time corresponds with the total execution time of treslpowerful GPU device.
Nonetheless, Epresents a 30 % of performance improvement against theitasel
The use of one and two CPU-cores; (Bnd E) helps to decrease this critical
execution time because the number of subproblems (SSSReprehthat the criti-
cal GPU has to resolve is reduced. The instangstiows a 65 % of performance
improvement. The more launched threads, the less the catigugiven to each
device. Nevertheless, due to the irregular nature of thptg(aee the distribution
time in Fig.1.1), there is a threshold where the equitabtétfmm overloads so much
the work that the CPU-cores have. This occurs when the metliydasks, that they
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Figure 1.2 Execution times of (a) Equitable and (b) Work-Stealing Scheduling policies.

were assigned to GPUs before, are assigned to CPU-coreshi§oeason, the to-
tal execution time of the approach 5 significantly increased even surpassing the
baseline time. Furthermore, as more threads are launcbedtfis point, the total
time execution is reduced. This occurs because the numkeasksd per computa-
tional unit is less and all devices are used, but the timeastrpasses the baseline
times.

1.7.1.2 Work-Stealing Scheduling Figure 1.2b shows the execution time results
of the work-stealing technique for instances with différ@mmber of OpenMP threads.
The performance of the baseline approach) (& significantly improved by any ex-
perimental instance that uses the work-stealing methogl. (Wie instance that uses
only two GPUs has a 44 % of performance improvement agaiesbdseline. As
we increase the number of OpenMP threads, more hardwareedeare used, re-
ducing the execution times. Although the most costly tasksatéso taken by the
CPU-cores, while they are computing their subproblem, tR&J&are continuously
stealing tasks. The instance with the fastest executioestismithe W instance, lead-
ing to a 60 % of performance improvement. However, when timelrar of launched
threads exceeds the number of heterogeneous computatioita(\W;4 and W),
the execution of threads that belong to the same CPU-comnisucrent. This be-
haviour leads to slightly penalty times, reaching a perfomoe improvement of 40 %
against the baseline.

1.7.2 512-Source-Node-to-All Shortest Path

1.7.2.1 Equitable Scheduling Figure 1.3a presents the execution times for in-
stances for the equitable scheduling implementation dfefeint OpenMP launched
threads. The best performance is obtained with thedhfiguration, leading to a
45 % of performance improvement against the baseline.

The heterogeneous approaches with CPU-cores () have worse execution
times than the baseline due to memory access bottlenecksisittecause the CPUs
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Figure 1.3 512 nodes execution times of (a) Equitable and (b) Work-Stealing Sthedu

are taking the costly tasks due to the random nature of thenS#i2s selection.
However, as it happened in the complete APSP scenario,iitiésis reduced when
more threads are launched.

1.7.2.2 Work-Stealing Scheduling Figure 1.3b shows the work-stealing imple-
mentation for different OpenMP launched threads. As it leaggn the APSP sce-
nario, the execution time of any work-stealing instancg{We, ) is better than the
baseline (). The instance of two threads that only uses GPU devices,has a
very good performance against the baseline (46 % of perfoceamprovement). In-
serting an additionally CPU-core to the heterogeneougsy i\, leads to an even
better performance improvement of 47 %. However, addingentiban one CPU-
cores to the heterogeneous system, Wg;, leads to slightly worse execution times
compared with the best.

1.7.3 Experimental Conclusions

The best execution time for the complete APSP scenario ig\asth with an equi-
table scheduling implementation, Heading to an 65 % of performance improve-
ment compared with the baseling GHlowever, the next approaches that closely fol-
lows this improvement are those that use a work-stealinggmentation, (Ws. . s}),
instead other equitable scheduling instances with sirthil@ad configuration.

For the 512-source-to-all scenario, the best results adezl with a work-stealing
implementation, VW, with a 47 % of improvement compared tq .GThe equitable
scheduling approach looses performance against the iagefiany thread config-
urations excepting the version that only uses GPUYs, E

These results show that (1) the equitable scheduling caorsaltup to achieve
the best performance times avoiding critical code regiansths very sensible to
changes of the input graph, and (2) the work-stealing implgations have a more
robust performance than the equitable scheduling bechegate more independent
from the graph nature.
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1.8 Conclusions

We have presented solutions of the APSP problem for heteemyes systems com-
posed by GPUs and CPU-cores using equitable and work+sgelalad-balancing

techniques. These solutions have achieved a performamrevement up to 65 %

compared with the baseline single-GPU solution. Moredherresults of our exper-
iments have shown that the work-stealing implementatich e same number of
OpenMP threads have given a good performance for both teséedrios. However,
the equitable scheduling implementation that involves &€Btés have not shown a
significantly performance improvement if the nature of thapd is not taken into

account.

Our first conclusion is, that the jointly use of very diffeteomputational power
devices is useful to improve the total execution time corag@avith the fastest GPU
implementation. Second, the previous study of the natutieedhput problem allows
us to better mapping the most costly tasks to the most polveeftices. For our
case, the equitable scheduling that maps all costly tasklket@sPUs and leaves
light ones to the CPU-cores leads to the best performancally;ithe application
of the work-stealing technique results in a more robust @m@ntation against the
equitable scheduling because it is less sensible to theenatthe input problem.
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