
A Tuned, Concurrent-Kernel Approach
to Speed Up the APSP Problem
Hector Ortega-Arranz, Yuri Torres, Diego R. Llanos,

and Arturo Gonzalez-Escribano
Universidad de Valladolid, Spain

{hector|yuri.torres|diego|arturo}@infor.uva.es
13th CMMSE International Conference, Almeŕıa, june 2013

Introduction
• Many real-world problems compute shortest paths from any source to any destination.

• The All-Pair Shortest-Path (APSP) problem is a well-known problem in graph theory whose
objective is to find the shortest paths between any pair of nodes.

• The application of GPGPU computing to accelerate problems related with shortest-path
problems have increased during the last years.

• The use of advanced optimizations as the correct choice of the threadBlock size and the

use of concurrent kernels can improve even more the GPU performance.

• Our goal: To squeeze the performance of the GPU solution [1] for a real-life problem
(APSP), following the recommendations of CUDA [2] and the guidelines described in [3].

Fermi architecture

Parameter Fermi GF110

Number of SPs (per-SM) 32
Max. number of blocks (per-SM) 8
Max. number of threads (per-SM) 1 536
Max. number of threads (per-block) 1 024
Max. concurrent kernel supported 16
Max. Occupancy block sizes 192, 256, 384,

recommended by CUDA [2] 512, 768
Block sizes for scatter access patterns 64, 96

recommended by [3] 128

GPU Dijkstra and the relax kernel
1: <<<initialize>>>(U,F, δ);
2: while (∆ 6=∞) do
3: <<<relax>>>(U,F, δ);
4: ∆ =<<<minimum>>>(U, δ);
5: <<<update>>>(U,F, δ,∆);
6: end while

U : Set of unsettled nodes
F : Set of frontier nodes
δ: Vector of tentative distances
∆: Iteration threshold

1: tid = thread.Id;
2: if (F[tid] == TRUE) then
3: for all suc successor of tid do
4: if (U[suc] == TRUE) then
5: BEGIN ATOMIC REGION
6: δ[suc] = min{δ[suc], δ[tid] + w(tid,suc)};
7: END ATOMIC REGION
8: end if
9: end for

10: end if

Optimization 1: ThreadBlock size
• Not always Maximum Occupancy (MO): A common

optimization to hide the memory latencies is the use of MO
block sizes but not always achieves the best performance.

• Kernel characterization: ↑ #low coalesced accesses

#instruc per thread

- Best performance obtained with medium-occup. block sizes.
- Medium-occup. block sizes alleviate the memory bottleneck
and these blocks are evicted quicker than MO blocks.

• Hypothesis: Relax kernel performance would be improved

using threadBlock sizes that lead to SM medium-occupancy.

Optimization 2: Concurrent kernels

• Feature released since the 2nd CUDA architecture generation.

• Introduces a new level of parallelism automatically managed
by the CUDA driver.

• Good performance for small size kernels.
- Hardware resources are shared between concurrent kernels.

• Kernels with bigger sizes than available resources are
queued, but they are already launched.

• Hypothesis: Queued kernels could take profit from the

L1/L2 data-cache reutilization and the better block/warp dis-
patcher exploitation.

Experimental Setup
• Exhaustive simultaneous evaluation of threadBlock size and concurrent kernel

optimization techniques on the GPU implementation described in [1].

• ThreadBlock sizes tested: 192, 256, 384, 512 and 768 recommended by CUDA

and 64, 96 and 128 recomended by [3] .

• We use sparse graphs with 1 049 088 nodes (multiple of recommended values).

• Due to the amount of computational load, we have reduced the APSP problem to
1 024, 4 096 and 8 192-source-node to all.

• Number of concurrent kernels tested: 1, 2, 4, 8 and 16 (maximum number sup-

ported by Fermi) and 32, 64 to observe an stressed concurrent environment.

• The worst and best configurations are tested with 16 384, 32 768-source-node to all.

Results

 128

 132

 136

 140

 144

 148

 1  2  4  8  16  32  64

T
im

e
 (

s
e
c
)

Number of concurrent kernels

8192 tasks with different threadBlock size

 100

 200

 300

 400

 500

 1024 4096  8192  16384  32768

Number of tasks

The best and the worst tuning/multi-kernel configurations

256 threads, 1 conc. kernels
96 threads, 4 conc. kernels

• Always, the best configuration for relax kernel is
reached with 96 threads and 4 concurrent kernels.

• There are performance improvements from using 1
kernel until 4 - 8 kernels.

• Concurrent kernels better exploit the data-cache and
block warp dispatchers.

• The use of more than 4 - 8 concurrent kernels leads
to more memory bottlenecks and cache thrashing.

• The performance gain between the worst configu-

ration and the best one is 11.5% .

Conclusions and future work
• We have squeezed the performance of GPU architecture for the relax kernel in a 11.5%.

• The CUDA recommended configurations do not always reach the best results.

• The results corroborate the conclusion described in [3]:

– Smaller block sizes than the smallest MO size present better performance.

– Smaller blocks can be evicted from the SM quicker alleviating the memory bottleneck.

• We will test all L1 cache configurations to better exploit the memory hierarchy.

• Additionally, we want to extend the used techniques to optimize the rest of APSP kernels.

Acknowledgements
This research is partly supported by the Ministerio de Industria, Spain (CENIT MARTA, CENIT OASIS, CENIT OCEANLIDER), Ministerio de Ciencia y Tecnoloǵıa
(CAPAP-H3 network, TIN2010-12011-E), and the HPC-EUROPA2 project (project number: 228398) with the support of the European Commission - Capacities Area -

Research Infrastructures Initiative, and the ComplexHPC COST Action.

References

[1] Hector Ortega-Arranz and Yuri Torres and
Diego R. Llanos and Arturo Gonzalez-Escribano
A New GPU-based Approach to the Shortest Path Prob-
lem. To appear in Proceedings of High Performance
Computing and Simulation (HPCS) 2013.

[2] David B. Kirk and Wen-mei W. Hwu Programming
Massively Parallel Processors: A Hands-on Approach.
Morgan Kaufmann. Feb, 2010 ISBN: 978-0-12-381472-2.

[3] Yuri Torres, Arturo Gonzalez and Diego R.
Llanos uBench: exposing the impact of CUDA block
geometry in terms of performance The Journal of Su-
percomputing, pp. 1-14, 2013.

1


