
Getting Started with JavaTM IDL 
 

Java TM IDL is a technology for distributed objects--that is, objects interacting on 
different platforms across a network. Java IDL enables objects to interact regardless of 
whether they're written in the Java programming language or another language such as 
C, C++, COBOL, or others.  

This is possible because Java IDL is based on the Common Object Request Brokerage 
Architecture (CORBA), an industry-standard distributed object model. A key feature of 
CORBA is IDL, a language-neutral Interface Definition Language. Each language that 
supports CORBA has its own IDL mapping--and as its name implies, Java IDL supports 
the mapping for Java. To learn more about the IDL-to-Java language mapping, see IDL-
to-Java Language Mapping.  

To support interaction between objects in separate programs, Java IDL provides an 
Object Request Broker, or ORB. The ORB is a class library that enables low-level 
communication between Java IDL applications and other CORBA-compliant 
applications.  

This tutorial teaches the basic tasks needed to build a CORBA distributed application 
using Java IDL. You will build the classic "Hello World" program as a distributed 
application. The Hello World program has a single operation that returns a string to be 
printed.  

Any relationship between distributed objects has two sides: the client and the server. 
The server provides a remote interface, and the client calls a remote interface. These 
relationships are common to most distributed object standards, including Java Remote 
Method Invocation (RMI, RMI-IIOP) and CORBA. Note that in this context, the terms 
client and server define object-level rather than application-level interaction--any 
application could be a server for some objects and a client of others. In fact, a single 
object could be the client of an interface provided by a remote object and at the same 
time implement an interface to be called remotely by other objects.  

This figure shows how a one-method distributed object is shared between a CORBA 
client and server to implement the classic "Hello World" application.  

 
A one-method distributed object shared between a CORBA client and server.  

On the client side, the application includes a reference for the remote object. The object 
reference has a stub method, which is a stand-in for the method being called remotely. 
The stub is actually wired into the ORB, so that calling it invokes the ORB's connection 
capabilities, which forwards the invocation to the server.  



On the server side, the ORB uses skeleton code to translate the remote invocation into a 
method call on the local object. The skeleton translates the call and any parameters to 
their implementation-specific format and calls the method being invoked. When the 
method returns, the skeleton code transforms results or errors, and sends them back to 
the client via the ORBs.  

Between the ORBs, communication proceeds by means of a shared protocol, IIOP--the 
Internet Inter-ORB Protocol. IIOP, which is based on the standard TCP/IP internet 
protocol, defines how CORBA-compliant ORBs pass information back and forth. Like 
CORBA and IDL, the IIOP standard is defined by OMG, the Object Management 
Group.  

The Java IDL Development Process and the Hello 
World Tutorial  
This tutorial teaches the basic tasks in building a CORBA distributed application using 
Java IDL. You will build the classic "Hello World" program as a distributed application. 
The "Hello World" program has a single operation that returns a string to be printed.  

Despite its simple design, the Hello World program lets you learn and experiment with 
all the tasks required to develop almost any CORBA program that uses static 
invocation. The following steps provide a general guide to designing and developing a 
distributed object application with Java IDL. Links to the relevant steps of the tutorial 
will guide you through creating this sample application.  

1. Define the remote interface  

You define the interface for the remote object using the OMG's Interface 
Definition Langauge (IDL). You use IDL instead of the Java language because 
the idlj compiler automatically maps from IDL, generating all Java language 
stub and skeleton source files, along with the infrastructure code for connecting 
to the ORB. Also, by using IDL, you make it possible for developers to 
implement clients and servers in any other CORBA-compliant language.  

Note that if you're implementing a client for an existing CORBA service, or a 
server for an existing client, you would get the IDL interfaces from the 
implementer--such as a service provider or vendor. You would then run the idlj 
compiler over those interfaces and follow these steps.  

Writing the IDL file in this tutorial walks you through defining the remote 
interface for the simple "Hello World" example.  

2. Compile the remote interface  

When you run the idlj compiler over your interface definition file, it generates 
the Java version of the interface, as well as the class code files for the stubs and 
skeletons that enable your applications to hook into the ORB.  



Mapping Hello.idl to Java in this tutorial walks you through these steps for the 
simple "Hello World" example.  

3. Implement the server  

Once you run the idlj compiler, you can use the skeletons it generates to put 
together your server application. In addition to implementing the methods of the 
remote interface, your server code includes a mechanism to start the ORB and 
wait for invocation from a remote client.  

Developing the Hello World Server walks you through writing a simple server 
for the "Hello World" application.  

4. Implement the client  

Similarly, you use the stubs generated by the idlj compiler as the basis of your 
client application. The client code builds on the stubs to start its ORB, look up 
the server using the name service provided with Java IDL, obtain a reference for 
the remote object, and call its method.  

Developing a Client Application walks you through writing a simple client 
application.  

5. Start the applications  

Once you implement a server and a client, you can start the name service, then 
start the server, then run the client.  

Running the Hello World Application walks you through running the server 
and client program that together make up the "Hello World" application, and the 
name service that enables them to find one another.  

Using Stringified Object References walks you through making an object reference 
when there is no naming service.  

Running the Hello World Application on Two Machines describes one way of 
distributing the simple application across two machines - a client and a server.  

For More Information 
Although concepts are explained as they are introduced in the tutorial, you will find 
more information in the Concepts section. New terms are linked to their definitions 
throughout the tutorial.  

The Object Management Group no longer maintains this site, but the CORBA for 
Beginnners page contains links to web pages that provide introductory CORBA 
information.  



Getting Started with Java IDL:  
Writing the Interface Definition 

 

Note: All command and troubleshooting instructions apply to the Java 2 Platform, 
Standard Edition, version 1.4 and its version of idlj only.  

Before you start working with Java IDL, you need to install version 1.4 of J2SE. J2SE 
v.1.4 provides the Application Programming Interface (API) and Object Request Broker 
(ORB) needed to enable CORBA-based distributed object interaction, as well as the 
idlj compiler. The idlj compiler uses the IDL-to-Java language mapping to convert 
IDL interface definitions to corresponding Java interfaces, classes, and methods, which 
you can then use to implement your client and server code.  

This section teaches you how to write a simple IDL interface definition and how to 
translate the IDL interface to Java. It also describes the purpose of each file generated 
by the idlj compiler.  

These topics are included in this section:  

1. Writing Hello.idl  
2. Understanding the IDL file  
3. Mapping Hello.idl to Java  
4. Understanding the idlj Compiler Output  

Writing Hello.idl 
To create the Hello.idl file,  

1. Create a new directory, named Hello, for this application.  
2. Start your favorite text editor and create a file named Hello.idl in this 

directory.  
3. In your file, enter the code for the interface definition, Hello.idl:  

module HelloApp 
{ 
  interface Hello 
  { 
    string sayHello(); 
    oneway void shutdown(); 
  }; 
}; 

4. Save the file.  

Understanding the IDL file 



OMG IDL is the language used to describe the interfaces that client objects call and 
object implementations provide. An interface definition written in OMG IDL 
completely defines the interface and fully specifies each operation's parameters. An 
OMG IDL interface provides the information needed to develop clients that use the 
interface's operations.  

Clients are written in languages for which mappings from OMG IDL concepts have 
been defined. The mapping of an OMG IDL concept to a client language construct will 
depend on the facilities available in the client language. OMG specifies a mapping from 
IDL to several different programming languages, including C, C++, Smalltalk, COBOL, 
Ada, Lisp, Python, and Java. When mapped, each statement in OMG IDL is translated 
to a corresponding statement in the programming language of choice.  

For example, you could use the tool idlj to map an IDL interface to Java and 
implement the client class. When you mapped the same IDL to C++ and implemented 
the server in that language, the Java client (through the Java ORB) and C++ server 
(through the C++ ORB) interoperate as though they were written in the same language.  

The IDL for "Hello World" is extremely simple; its single interface has but two 
operations. You need perform only three steps:  

1. Declare the CORBA IDL module  
2. Declare the interface  
3. Declare the operations  

Declaring the CORBA IDL Module 

A CORBA module is a namespace that acts as a container for related interfaces and 
declarations. It corresponds closely to a Java package. Each module statement in an IDL 
file is mapped to a Java package statement.  

The module statement looks like this:  

module HelloApp 
{ 
    // Subsequent lines of code here. 
}; 

When you compile the IDL, the module statement will generate a package statement in 
the Java code.  

Declaring the Interface 

Like Java interfaces, CORBA interfaces declare the API contract an object has with 
other objects. Each interface statement in the IDL maps to a Java interface statement 
when mapped.  

In your Hello.idl file, the interface statement looks like this:  

module HelloApp 
{ 



  interface Hello  // These lines 
  {                // declare the  
                   // interface 
  };               // statement. 
}; 

When you compile the IDL, this statement will generate an interface statement in the 
Java code.  

Declaring the Operations 

CORBA operations are the behavior that servers promise to perform on behalf of clients 
that invoke them. Each operation statement in the IDL generates a corresponding 
method statement in the generated Java interface.  

In your Hello.idl file, the operation statement looks like this:  

module HelloApp 
{ 
  interface Hello 
  { 
    string sayHello();        // This line is an operation statement. 
    oneway void shutdown();   // This line is another 
  }; 
}; 
The interface definition for our little "Hello World" application is now complete.  

Mapping Hello.idl to Java 
The tool idlj reads OMG IDL files and creates the required Java files. The idlj 
compiler defaults to generating only the client-side bindings. If you need both client-
side bindings and server-side skeletons (as you do for our "Hello World" program), you 
must use the -fall option when running the idlj compiler. For more information on 
the IDL-to-Java compiler options, follow the link.  

New in J2SE v.1.4: The default server-side mapping generated when either the -fall or 
-fserver arguments are used conform to Chapter 11, Portable Object Adapter (POA) 
of the CORBA 2.3.1 Specification (formal/99-10-07). For more information on the 
POA, link to Portable Object Adapter.  

The advantages of using the Portable Object Adaptor (POA) are:  

• Allow programmers to construct object implementations that are portable 
between different ORB products.  

• Provide support for objects with persistent identities.  
• Provide support for transparent activation of objects.  
• Allow a single servant to support multiple object identities simultaneously.  

1. Make sure that the j2sdk/bin directory (or the directory containing idlj, java, 
javac, and orbd) are in your path.  

2. Go to a command line prompt.  
3. Change to the directory containing your Hello.idl file.  



4. Enter the compiler command:  

 idlj -fall Hello.idl 

If you list the contents of the directory, you will see that a directory called HelloApp 
has been created and that it contains six files. Open Hello.java in your text editor. 
Hello.java is the signature interface and is used as the signature type in method 
declarations when interfaces of the specified type are used in other interfaces. It looks 
like this:  

//Hello.java 
package HelloApp; 
 
 
/** 
* HelloApp/Hello.java 
* Generated by the IDL-to-Java compiler (portable), version "3.0" 
* from Hello.idl 
*/ 
 
public interface Hello extends HelloOperations, org.omg.CORBA.Object,  
org.omg.CORBA.portable.IDLEntity  
{ 
} // interface Hello 
 

With an interface this simple, it is easy to see how the IDL statements map to the 
generated Java statements.  

IDL Statement       Java Statement 

module HelloApp       package HelloApp; 

interface Hello       public interface Hello 

The single surprising item is the extends statement. All CORBA objects are derived 
from org.omg.CORBA.Object to ensure required CORBA functionality. The required 
code is generated by idlj; you do not need to do any mapping yourself.  

In previous versions of the idlj compiler (known as idltojava), the operations 
defined on the IDL interface would exist in this file as well. Starting with J2SDK 
v1.3.0, in conformance with the CORBA 2.3.1 Specification (formal/99-10-07), the 
IDL-to-Java mapping puts all of the operations defined on the IDL interface in the 
operations interface, HelloOperations.java. The operations interface is used in the 
server-side mapping and as a mechanism for providing optimized calls for co-located 
clients and servers. For Hello.idl, this file looks like this:  

//HelloOperations.java 
package HelloApp; 
 
 
/** 
* HelloApp/HelloOperations.java 



* Generated by the IDL-to-Java compiler (portable), version "3.0" 
* from Hello.idl 
*/ 
 
public interface HelloOperations  
{ 
  String sayHello (); 
  void Shutdown (); 
} // interface HelloOperations 
 

Because there are only two operations defined in this interface, it is easy to see how the 
IDL statements map to the generated Java statements.  

IDL Statement       Java Statement 

string sayHello();       String sayHello(); 

oneway void shutdown();       void Shutdown (); 

Understanding the idlj Compiler Output 
The idlj compiler generates a number of files. The actual number of files generated 
depends on the options selected when the IDL file is compiled. The generated files 
provide standard functionality, so you can ignore them until it is time to deploy and run 
your program. Under J2SE v.1.4, the files generated by the idlj compiler for 
Hello.idl, with the -fall command line option, are:  

• HelloPOA.java  

This abstract class is the stream-based server skeleton, providing basic CORBA 
functionality for the server. It extends org.omg.PortableServer.Servant, and 
implements the InvokeHandler interface and the HelloOperations interface. 
The server class, HelloServant, extends HelloPOA.  

• _HelloStub.java  

This class is the client stub, providing CORBA functionality for the client. It 
extends org.omg.CORBA.portable.ObjectImpl and implements the 
Hello.java interface.  

• Hello.java  

This interface contains the Java version of our IDL interface. The Hello.java 
interface extends org.omg.CORBA.Object, providing standard CORBA object 
functionality. It also extends the HelloOperations interface and 
org.omg.CORBA.portable.IDLEntity.  



• HelloHelper.java  

This class provides auxiliary functionality, notably the narrow() method 
required to cast CORBA object references to their proper types. The Helper 
class is responsible for reading and writing the data type to CORBA streams, 
and inserting and extracting the data type from Anys. The Holder class delegates 
to the methods in the Helper class for reading and writing.  

• HelloHolder.java  

This final class holds a public instance member of type Hello. Whenever the 
IDL type is an out or an inout parameter, the Holder class is used. It provides 
operations for org.omg.CORBA.portable.OutputStream and 
org.omg.CORBA.portable.InputStream arguments, which CORBA allows, 
but which do not map easily to Java's semantics. The Holder class delegates to 
the methods in the Helper class for reading and writing. It implements 
org.omg.CORBA.portable.Streamable.  

• HelloOperations.java  

This interface contains the methods sayHello() and shutdown(). The IDL-to-
Java mapping puts all of the operations defined on the IDL interface into this 
file, which is shared by both the stubs and skeletons.  

When you write the IDL interface, you do all the programming required to generate all 
these files for your distributed application. The next steps are to implement the client 
and server classes. In the steps that follow, you will create the HelloClient.java 
client class and the HelloServer.java server class.  

Troubleshooting 
• Error Message: "idlj" not found  

If you try to run idlj on the file Hello.idl and the system cannot find idlj, it 
is most likely not in your path. Make certain that the location of idlj (the 
J2SDK v.1.4 bin directory) is in your path, and try again.  

For More Information 
• IDL to Java Language Mapping Overview  

Provides the basics for mapping IDL constructs to the corresponding Java 
statements.  

• Chapter 3 of the OMG CORBA 2.3.1 specification, formal/99-10-07  

Provides the complete specification for OMG Interface Definition Language. At 
this writing, the specification can be downloaded from http://cgi.omg.org/c gi-
bin/doc?formal/99-10-07.  



Getting Started with Java IDL: 
Developing the Hello World Server 

 

The example server consists of two classes, the servant and the server. The servant, 
HelloImpl, is the implementation of the Hello IDL interface; each Hello instance is 
implemented by a HelloImpl instance. The servant is a subclass of HelloPOA, which is 
generated by the idlj compiler from the example IDL.  

The servant contains one method for each IDL operation, in this example, the 
sayHello() and shutdown() methods. Servant methods are just like ordinary Java 
methods; the extra code to deal with the ORB, with marshaling arguments and results, 
and so on, is provided by the skeleton. 

The server class has the server's main() method, which:  

• Creates and initializes an ORB instance  
• Gets a reference to the root POA and activates the POAManager  
• Creates a servant instance (the implementation of one CORBA Hello object) 

and tells the ORB about it  
• Gets a CORBA object reference for a naming context in which to register the 

new CORBA object  
• Gets the root naming context  
• Registers the new object in the naming context under the name "Hello"  
• Waits for invocations of the new object from the client  

This lesson introduces the basics of writing a CORBA server. For an example of the 
"Hello World" program with a persistent object server, see Example 2: Hello World 
with Persistent State. For more discussion of CORBA servers, see Developing Servers.  

The steps in this lesson cover:  

1. Creating HelloServer.java  
2. Understanding HelloServer.java  
3. Compiling the Hello World Server  

 

Creating HelloServer.java 
To create HelloServer.java,  

1. Start your text editor and create a file named HelloServer.java in your main 
project directory, Hello.  



2. Enter the following code for HelloServer.java in the text file. The following 
section, Understanding HelloServer.java, explains each line of code in some 
detail.  

// HelloServer.java 
// Copyright and License  
import HelloApp.*; 
import org.omg.CosNaming.*; 
import org.omg.CosNaming.NamingContextPackage.*; 
import org.omg.CORBA.*; 
import org.omg.PortableServer.*; 
import org.omg.PortableServer.POA; 
 
import java.util.Properties; 
 
class HelloImpl extends HelloPOA { 
  private ORB orb; 
 
  public void setORB(ORB orb_val) { 
    orb = orb_val;  
  } 
     
  // implement sayHello() method 
  public String sayHello() { 
    return "\nHello world !!\n"; 
  } 
     
  // implement shutdown() method 
  public void shutdown() { 
    orb.shutdown(false); 
  } 
} 
 
 
public class HelloServer { 
 
  public static void main(String args[]) { 
    try{ 
      // create and initialize the ORB 
      ORB orb = ORB.init(args, null); 
 
      // get reference to rootpoa & activate the POAManager 
      POA rootpoa = 
POAHelper.narrow(orb.resolve_initial_references("RootPOA")); 
      rootpoa.the_POAManager().activate(); 
 
      // create servant and register it with the ORB 
      HelloImpl helloImpl = new HelloImpl(); 
      helloImpl.setORB(orb);  
 
      // get object reference from the servant 
      org.omg.CORBA.Object ref = 
rootpoa.servant_to_reference(helloImpl); 
      Hello href = HelloHelper.narrow(ref); 
    
      // get the root naming context 
      org.omg.CORBA.Object objRef = 
          orb.resolve_initial_references("NameService"); 
      // Use NamingContextExt which is part of the Interoperable 
      // Naming Service (INS) specification. 



      NamingContextExt ncRef = 
NamingContextExtHelper.narrow(objRef); 
 
      // bind the Object Reference in Naming 
      String name = "Hello"; 
      NameComponent path[] = ncRef.to_name( name ); 
      ncRef.rebind(path, href); 
 
      System.out.println("HelloServer ready and waiting ..."); 
 
      // wait for invocations from clients 
      orb.run(); 
    }  
  
      catch (Exception e) { 
        System.err.println("ERROR: " + e); 
        e.printStackTrace(System.out); 
      } 
    
      System.out.println("HelloServer Exiting ..."); 
  
  } 
} 

  

3. Save and close HelloServer.java.  

 

Understanding HelloServer.java 
This section explains each line of HelloServer.java, describing what the code does, 
as well as why it is needed for this application.  

Performing Basic Setup 

The structure of a CORBA server program is the same as most Java applications: You 
import required library packages, declare the server class, define a main() method, and 
handle exceptions.  

Importing Required Packages 

First, we import the packages required for the server class:  

// The package containing our stubs 
import HelloApp.*; 
 
// HelloServer will use the naming service 
import org.omg.CosNaming.*; 
 
// The package containing special exceptions thrown by the name 
service 
import org.omg.CosNaming.NamingContextPackage.*; 
 
// All CORBA applications need these classes 
import org.omg.CORBA.*; 



 
// Classes needed for the Portable Server Inheritance Model 
import org.omg.PortableServer.*; 
import org.omg.PortableServer.POA; 
 
// Properties to initiate the ORB 
import java.util.Properties; 

Defining the Servant Class 

In this example, we are defining the class for the servant object within 
HelloServer.java, but outside the HelloServer class.  

class HelloImpl extends HelloPOA 
{ 
  // The sayHello() and shutdown() methods go here. 
} 

The servant is a subclass of HelloPOA so that it inherits the general CORBA 
functionality generated for it by the compiler.  

First, we create a private variable, orb that is used in the setORB(ORB) method. The 
setORB method is a private method defined by the application developer so that they 
can set the ORB value with the servant. This ORB value is used to invoke shutdown() 
on that specific ORB in response to the shutdown() method invocation from the client.  

  private ORB orb; 
   
  public void setORB(ORB orb_val) { 
    orb = orb_val;  
  } 

Next, we declare and implement the required sayHello() method:  

  public String sayHello() 
  { 
    return "\nHello world!!\n";    
  } 

And last of all, we implement the shutdown() method in a similar way. The 
shutdown() method calls the org.omg.CORBA.ORB.shutdown(boolean) method for 
the ORB. The shutdown(false) operation indicate that the ORB should shut down 
immediately, without waiting for processing to complete.  

  public void shutdown() { 
    orb.shutdown(false); 
  } 

Declaring the Server Class 

The next step is to declare the server class:  

public class HelloServer  
{ 



  // The main() method goes here. 
} 

Defining the main() Method 

Every Java application needs a main method. It is declared within the scope of the 
HelloServer class:  

  public static void main(String args[]) 
  { 
    // The try-catch block goes here. 
  } 

Handling CORBA System Exceptions 

Because all CORBA programs can throw CORBA system exceptions at runtime, all of 
the main() functionality is placed within a try-catch block. CORBA programs throw 
runtime exceptions whenever trouble occurs during any of the processes (marshaling, 
unmarshaling, upcall) involved in invocation. The exception handler simply prints the 
exception and its stack trace to standard output so you can see what kind of thing has 
gone wrong.  

The try-catch block is set up inside main(), as shown:  

    try{ 
     
      // The rest of the HelloServer code goes here. 
     
    } catch(Exception e) { 
        System.err.println("ERROR: " + e); 
        e.printStackTrace(System.out); 
      } 

Creating and Initializing an ORB Object 

A CORBA server needs a local ORB object, as does the CORBA client. Every server 
instantiates an ORB and registers its servant objects so that the ORB can find the 
server when it receives an invocation for it.  

The ORB variable is declared and initialized inside the try-catch block.  

      ORB orb = ORB.init(args, null); 

The call to the ORB's init() method passes in the server's command line arguments, 
allowing you to set certain properties at runtime.  

Get a Reference to the Root POA and Activate the POAManager 

The ORB obtains the initial object references to services such as the Name Service 
using the method resolve_initial_references.  



The reference to the root POA is retrieved and the POAManager is activated from within 
the try-catch block.  

      POA rootpoa = 
POAHelper.narrow(orb.resolve_initial_references("RootPOA")); 
      rootpoa.the_POAManager().activate(); 

The activate() operation changes the state of the POA manager to active, causing 
associated POAs to start processing requests. The POA manager encapsulates the 
processing state of the POAs with which it is associated. Each POA object has an 
associated POAManager object. A POA manager may be associated with one or more 
POA objects.  

Managing the Servant Object 

A server is a process that instantiates one or more servant objects. The servant inherits 
from the interface generated by idlj and actually performs the work of the operations 
on that interface. Our HelloServer needs a HelloImpl.  

Instantiating the Servant Object 

We instantiate the servant object inside the try-catch block, just after activating the POA 
manager, as shown:  

      HelloImpl helloImpl = new HelloImpl(); 

The section of code describing the servant class was explained previously.  

In the next line of code, setORB(orb) is defined on the servant so that ORB.shutdown() 
can be called as part of the shutdown operation. This step is required because of the 
shutdown() method defined in Hello.idl.  

      helloImpl.setORB(orb);  

There are other options for implementing the shutdown operation. In this example, the 
shutdown() method called on the Object takes care of shutting down an ORB. In 
another implementation, the shutdown method implementation could have simply set a 
flag, which the server could have checked and called shutdown().  

The next set of code is used to get the object reference associated with the servant. The 
narrow() method is required to cast CORBA object references to their proper types.  

      org.omg.CORBA.Object ref = 
rootpoa.servant_to_reference(helloImpl); 
      Hello href = HelloHelper.narrow(ref); 

Working with COS Naming 

The HelloServer works with the Common Object Services (COS) Naming Service to 
make the servant object's operations available to clients. The server needs an object 
reference to the naming service so that it can publish the references to the objects 



implementing various interfaces. These object references are used by the clients for 
invoking methods. Another way a servant can make the objects available to clients for 
invocations is by stringifying the object references to a file.  

The two options for Naming Services shipped with J2SE v.1.4 are:  

• orbd, which includes both a Transient Naming Service and a Persistent Naming 
Service, in addition to a Server Manager.  

• tnameserv - a Transient Naming Service.  

This example uses orbd.  

Obtaining the Initial Naming Context 

In the try-catch block, below getting the object reference for the servant, we call 
orb.resolve_initial_references() to get an object reference to the name server:  

      org.omg.CORBA.Object objRef = 
          orb.resolve_initial_references("NameService"); 

The string "NameService" is defined for all CORBA ORBs. When you pass in that 
string, the ORB returns a naming context object that is an object reference for the name 
service. The string "NameService" indicates:  

• The naming service will be persistent when using ORBD's naming service, as 
we do in this example.  

• The naming service will be transient when using tnameserv.  

The proprietary string "TNameService" indicates that the naming service will be 
transient when using ORBD's naming service.  

Narrowing the Object Reference 

As with all CORBA object references, objRef is a generic CORBA object. To use it as 
a NamingContextExt object, you must narrow it to its proper type. The call to 
narrow() is just below the previous statement:  

      NamingContextExt ncRef = NamingContextExtHelper.narrow(objRef); 

Here you see the use of an idlj-generated helper class, similar in function to 
HelloHelper. The ncRef object is now an org.omg.CosNaming.NamingContextExt 
and you can use it to access the naming service and register the server, as shown in the 
next topic.  

The NamingContextExt object is new to J2SE v.1.4, and is part of the Interoperable 
Naming Service specification.  

Registering the Servant with the Name Server 



Just below the call to narrow(), we create a new NameComponent array. Because the 
path to Hello has a single element, we create the single-element array that 
NamingContext.resolve requires for its work:  

      String name = "Hello"; 
      NameComponent path[] = ncRef.to_name( name ); 

Finally, we pass path and the servant object to the naming service, binding the servant 
object to the "Hello" id:  

      ncRef.rebind(path, href); 

Now, when the client calls resolve("Hello") on the initial naming context, the 
naming service returns an object reference to the Hello servant.  

Waiting for Invocation 

The previous sections describe the code that makes the server ready; the next section 
explains the code that enables it to simply wait around for a client to request its service. 
The following code, which is at the end of (but within) the try-catch block, shows how 
to accomplish this.  

      orb.run(); 

When called by the main thread, ORB.run() enables the ORB to perform work using 
the main thread, waiting until an invocation comes from the ORB. Because of its 
placement in main(), after an invocation completes and sayHello() returns, the server 
will wait again. This is the reason that the HelloClient explicitly shuts down the ORB 
after completing its task.  

 

Compiling the Hello World Server 
Now we will compile the HelloServer.java so that we can correct any errors before 
continuing with this tutorial.  

Windows users note that you should substitute backslashes (\) for the slashes (/) in all 
paths in this document.  

To compile HelloServer.java,  

1. Change to the Hello directory.  
2. Run the Java compiler on HelloServer.java:  

javac HelloServer.java HelloApp/*.java 

3. Correct any errors in your file and recompile if necessary.  
4. The files HelloServer.class and HelloImpl.class are generated in the 

Hello directory.  



Running the Hello World Server 

The document Running the Hello World Application discusses running HelloServer 
and the rest of the application.  

 

Understanding The Server-Side 
Implementation Models 

CORBA supports at least two different server-side mappings for implementing an IDL 
interface:  

• The Inheritance Model  

Using the Inheritance Model, you implement the IDL interface using an 
implementation class that also extends the compiler-generated skeleton.  

Inheritance models include:  

o The OMG-standard, POA. Given an interface My defined in My.idl, the 
file MyPOA.java is generated by the idlj compiler. You must provide 
the implementation for My and it must inherit from MyPOA, a stream-based 
skeleton that extends org.omg.PortableServer.Servant, which serves 
as the base class for all POA servant implementations.  

New in J2SE v.1.4: The default server-side mapping generated when 
either the -fall or -fserver arguments are used conform to Chapter 11, 
Portable Object Adapter (POA) of the CORBA 2.3.1 Specification 
(formal/99-10-07). For more information on the POA, link to Portable 
Object Adapter.  

The advantages of using the Portable Object Adaptor (POA) are:  

� Allow programmers to construct object implementations that are 
portable between different ORB products.  

� Provide support for objects with persistent identities.  
� Provide support for transparent activation of objects.  
� Allow a single servant to support multiple object identities 

simultaneously.  
o ImplBase. Given an interface My defined in My.idl, the file 

_MyImplBase.java is generated. You must provide the implementation 
for My and it must inherit from _MyImplBase.  

NOTE: ImplBase is deprecated in favor of the POA model, but is 
provided to allow compatibility with servers written in J2SE 1.3 and 
prior. We do not recommend creating new servers using this 
nonstandard model.  



• The Delegation Model  

Using the Delegation Model, you implement the IDL interface using two 
classes:  

o An IDL-generated Tie class that inherits from the compiler-generated 
skeleton, but delegates all calls to an implementation class.  

o A class that implements the IDL-generated operations interface (such as 
HelloOperations), which defines the IDL function.  

The Delegation model is also known as the Tie model, or the Tie Delegation 
model. It inherits from either the POA or ImplBase compiler-generated skeleton, 
so the models will be described as POA/Tie or ImplBase/Tie models in this 
document.  

This tutorial presents the POA Inheritance model for server-side implementation. For 
tutorials using the other server-side implementations, see the following documents:  

• Java IDL: The "Hello World" Example with the POA/Tie Server-Side Model  

You might want to use the Tie model instead of the typical Inheritance model if 
your implementation must inherit from some other implementation. Java allows 
any number of interface inheritance, but there is only one slot for class 
inheritance. If you use the inheritance model, that slot is used up . By using the 
Tie Model, that slot is freed up for your own use. The drawback is that it 
introduces a level of indirection: one extra method call occurs when invoking a 
method.  

• Java IDL: The "Hello World" Example with the ImplBase Server-Side Model  

The ImplBase server-side model is an Inheritance Model, as is the POA model. 
Use the idlj compiler with the -oldImplBase flag to generate server-side 
bindings that are compatible with older version of Java IDL (prior to J2SE 1.4).  

Note that using the -oldImplBase flag is non-standard: these APIs are 
being deprecated. You would use this flag ONLY for compatibility with 
existing servers written in J2SE 1.3 or earlier. In that case, you would need 
to modify an existing MAKEFILE to add the -oldImplBase flag to the idlj 
compiler, otherwise POA-based server-side mappings will be generated.  

 

For More Information 
Exceptions: System Exceptions  

Explains how CORBA system exceptions work and provides details on the 
minor codes of Java IDL's system exceptions  

Developing Servers  
Covers topics of interest to CORBA server programmers  



Java IDL Naming Service  
Covers the COS Naming Service in greater detail  

 



Getting Started with Java IDL: 
Developing a Client Application 

 

This topic introduces the basics of writing a CORBA client application. Included in this 
lesson are:  

1. Creating HelloClient.java  
2. Understanding HelloClient.java  
3. Compiling HelloClient.java  

Creating HelloClient.java 
To create HelloClient.java,  

1. Start your text editor and create a file named HelloClient.java in your main 
project directory, Hello.  

2. Enter the following code for HelloClient.java in the text file. The following 
section, Understanding HelloClient.java, explains each line of code in some 
detail.  

HelloClient.java  

// Copyright and License  
  
import HelloApp.*; 
import org.omg.CosNaming.*; 
import org.omg.CosNaming.NamingContextPackage.*; 
import org.omg.CORBA.*; 
 
public class HelloClient 
{ 
  static Hello helloImpl; 
 
  public static void main(String args[]) 
    { 
      try{ 
        // create and initialize the ORB 
 ORB orb = ORB.init(args, null); 
 
        // get the root naming context 
        org.omg.CORBA.Object objRef =  
     orb.resolve_initial_references("NameService"); 
        // Use NamingContextExt instead of NamingContext. This 
is  
        // part of the Interoperable naming Service.   
        NamingContextExt ncRef = 
NamingContextExtHelper.narrow(objRef); 
  
        // resolve the Object Reference in Naming 
        String name = "Hello"; 
        helloImpl = HelloHelper.narrow(ncRef.resolve_str(name)); 



 
        System.out.println("Obtained a handle on server object: 
" + helloImpl); 
        System.out.println(helloImpl.sayHello()); 
        helloImpl.shutdown(); 
 
 } catch (Exception e) { 
          System.out.println("ERROR : " + e) ; 
   e.printStackTrace(System.out); 
   } 
    } 
 
} 
  

3. Save and close HelloClient.java.  

Understanding HelloClient.java 
This section explains each line of HelloClient.java, describing what the code does, 
as well as why it is needed for this application.  

Performing Basic Setup 

The basic shell of a CORBA client is the same as many Java applications: You import 
required library packages, declare the application class, define a main method, and 
handle exceptions.  

Importing Required Packages 

First, we import the packages required for the client class:  

import HelloApp.*; // the package containing our stubs 
import org.omg.CosNaming.*; // HelloClient will use the Naming Service 
import org.omg.CosNaming.NamingContextPackage.*; 
import org.omg.CORBA.*; // All CORBA applications need these classes 

Declaring the Client Class 

The next step is to declare the client class:  

public class HelloClient 
{ 
  // The main() method goes here. 
} 

Defining a main() Method 

Every Java application needs a main() method. It is declared within the scope of the 
HelloClient class, as follows:  

  public static void main(String args[]) 
  { 
    // The try-catch block goes here. 



  } 

Handling CORBA System Exceptions 

Because all CORBA programs can throw CORBA system exceptions at runtime, all of 
the main() functionality is placed within a try-catch block. CORBA programs throw 
system exceptions whenever trouble occurs during any of the processes (marshaling, 
unmarshaling, upcall) involved in invocation.  

Our exception handler simply prints the name of the exception and its stack trace to 
standard output so you can see what kind of thing has gone wrong.  

The try-catch block is set up inside main(),  

    try{ 
     
      // Add the rest of the HelloClient code here. 
     
    } catch(Exception e) { 
        System.out.println("ERROR : " + e); 
        e.printStackTrace(System.out); 
      } 

Creating an ORB Object 

A CORBA client needs a local ORB object to perform all of its marshaling and IIOP 
work. Every client instantiates an org.omg.CORBA.ORB object and initializes it by 
passing to the object certain information about itself.  

The ORB variable is declared and initialized inside the try-catch block.  

 ORB orb = ORB.init(args, null); 

The call to the ORB's init() method passes in your application's command line 
arguments, allowing you to set certain properties at runtime.  

Finding the Hello Server 

Now that the application has an ORB, it can ask the ORB to locate the actual service it 
needs, in this case the Hello server. There are a number of ways for a CORBA client to 
get an initial object reference; our client application will use the COS Naming Service 
specified by OMG and provided with Java IDL. See Using Stringified Object 
References for information on how to get an initial object reference when there is no 
naming service available.  

The two options for Naming Services shipped with J2SE v.1.4 are orbd, which is a 
daemon process containing a Bootstrap Service, a Transient Naming Service, a 
Persistent Naming Service, and a Server Manager, and tnameserv, a transient naming 
service. This example uses orbd.  

Obtaining the Initial Naming Context 



The first step in using the naming service is to get the initial naming context. In the try-
catch block, below your ORB initialization, you call 
orb.resolve_initial_references() to get an object reference to the name server:  

        org.omg.CORBA.Object objRef =  
            orb.resolve_initial_references("NameService"); 

The string "NameService" is defined for all CORBA ORBs. When you pass in that 
string, the ORB returns the initial naming context, an object reference to the name 
service. The string "NameService" indicates:  

• The persistent naming service will be used when using ORBD as the naming 
service.  

• The transient naming service will be used when using tnameserv as the naming 
service.  

The string "TNameService" indicates that the transient naming service will be used 
when ORBD is the naming service. In this example, we are using the persistent naming 
service that is a part of orbd.  

Narrowing the Object Reference 

As with all CORBA object references, objRef is a generic CORBA object. To use it as 
a NamingContextExt object, you must narrow it to its proper type.  

        NamingContextExt ncRef = 
NamingContextExtHelper.narrow(objRef); 

Here we see the use of an idlj-generated helper class, similar in function to 
HelloHelper. The ncRef object is now an org.omg.CosNaming.NamingContextExt 
and you can use it to access the naming service and find other services. You will do that 
in the next step.  

The NamingContextExt object is new to J2SE v.1.4, and is part of the Interoperable 
Naming Service.  

Resolve the Object Reference in Naming 

To publish a reference in the Naming Service to the Hello object implementing the 
Hello interface, you first need an identifying string for the Hello object.  

      String name = "Hello"; 

Finally, we pass name to the naming service's resolve_str() method to get an object 
reference to the Hello server and narrow it to a Hello object:  

        helloImpl = HelloHelper.narrow(ncRef.resolve_str(name)); 
        System.out.println("Obtained a handle on server object: " + 
helloImpl);      



Here you see the HelloHelper helper class at work. The resolve_str() method 
returns a generic CORBA object as you saw above when locating the name service 
itself. Therefore, you immediately narrow it to a Hello object, which is the object 
reference you need to perform the rest of your work. Then, you send a message to the 
screen confirming that the object reference has been obtained.  

Invoking the sayHello() Operation 

CORBA invocations look like a method call on a local object. The complications of 
marshaling parameters to the wire, routing them to the server-side ORB, unmarshaling, 
and placing the upcall to the server method are completely transparent to the client 
programmer. Because so much is done for you by generated code, invocation is really 
the easiest part of CORBA programming.  

Finally, we print the results of the invocation to standard output and explicitly shutdown 
the ORB:  

        System.out.println(helloImpl.sayHello()); 
        helloImpl.shutdown(); 

Compiling HelloClient.java 
Now we will compile HelloClient.java so that we can correct any errors before 
continuing with this tutorial.  

Windows users note that you should substitute backslashes (\) for the slashes (/) in all 
paths in this document.  

To compile HelloClient.java,  

1. Change to the Hello directory.  
2. Run the Java compiler on HelloClient.java:  

javac HelloClient.java HelloApp/*.java 

3. Correct any errors in your file and recompile if necessary.  
4. The HelloClient.class is generated to the Hello directory.  

Running the Client Application 

Running the Hello World application is covered in Running the Hello World 
Application.  

For More Information 
Developing Clients  

Covers topics of interest to CORBA client programmers  
Exceptions: System Exceptions  



Explains how CORBA system exceptions work and provides details on the 
minor codes of Java IDL's system exceptions  

Initialization:  System Properties  
Explains what properties can be passed to the ORB at initialization  

Naming Service  
Covers the COS Naming Service in greater detail  



Getting Started with Java IDL 
Running the Hello World Application 

 
This topic walks you through running the server and client program that together make 
up the "Hello World" application.  

Running the Hello World Application 
Despite its simple design, the Hello World program lets you learn and experiment with 
all the tasks required to develop almost any CORBA program that uses static 
invocation.  

This example requires a naming service to make the servant object's operations 
available to clients. The server needs an object reference to the naming service so that it 
can publish the references to the objects implementing various interfaces. These object 
references are used by the clients for invoking methods. The two options for Naming 
Services shipped with J2SE v.1.4 are tnameserv, a transient naming service, and orbd, 
which is a daemon process containing a Bootstrap Service, a Transient Naming Service, 
a Persistent Naming Service, and a Server Manager. This example uses orbd.  

When running this example, remember that, when using Solaris software, you must 
become root to start a process on a port under 1024. For this reason, we recommend that 
you use a port number greater than or equal to 1024. The -ORBInitialPort option is 
used to override the default port number in this example. The following instructions 
assume you can use port 1050 for the Java IDL Object Request Broker Daemon, orbd. 
You can substitute a different port if necessary. When running these examples on a 
Windows machine, subtitute a backslash (\) in path names. 

To run this client-server application on your development machine:  

1. Start orbd.  

To start orbd from a UNIX command shell, enter:  

  orbd -ORBInitialPort 1050 -ORBInitialHost localhost& 

From an MS-DOS system prompt (Windows), enter:  

  start orbd -ORBInitialPort 1050 -ORBInitialHost localhost 

Note that 1050 is the port on which you want the name server to run. -
ORBInitialPort is a required command-line argument. Note that when using 
Solaris software, you must become root to start a process on a port under 1024. 
For this reason, we recommend that you use a port number greater than or equal 
to 1024.  



Note that -ORBInitialHost is also a required command-line argument. For this 
example, since both client and server on running on the development machine, 
we have set the host to localhost. When developing on more than one 
machine, you will replace this with the name of the host. For an example of how 
to run this program on two machines, see The Hello World Example on Two 
Machines.  

2. Start the Hello server.  

To start the Hello server from a UNIX command shell, enter:  

java HelloServer -ORBInitialPort 1050 -ORBInitialHost localhost& 

From an MS-DOS system prompt (Windows), enter:  

start java HelloServer -ORBInitialPort 1050 -ORBInitialHost 
localhost 

For this example, you can omit -ORBInitialHost localhost since the name 
server is running on the same host as the Hello server. If the name server is 
running on a different host, use -ORBInitialHost nameserverhost to specify 
the host on which the IDL name server is running.  

Specify the name server (orbd) port as done in the previous step, for example, -
ORBInitialPort 1050.  

3. Run the client application:  

java HelloClient -ORBInitialPort 1050 -ORBInitialHost localhost 

For this example, you can omit -ORBInitialHost localhost since the name 
server is running on the same host as the Hello client. If the name server is 
running on a different host, use -ORBInitialHost nameserverhost to specify 
the host on which the IDL name server is running.  

Specify the name server (orbd) port as done in the previous step, for example, -
ORBInitialPort 1050.  

4. The client prints the string from the server to the command line:  

Hello world!! 

The name server, like many CORBA servers, runs until you explicitly stop it. To avoid 
having many servers running, kill the name server process after the client application 
returns successfully. To do this from a DOS prompt, select the window that is running 
the server and enter Ctrl+C to shut it down. To do this from a Unix shell, find the 
process, and kill it.  

 



Getting Started with Java IDL: Using 
Stringified Object References 

 

To invoke an operation on a CORBA object, a client application needs a reference to the 
object. You can get such references in a number of ways, such as calling 
ORB.resolve_initial_references() or using another CORBA object (like the name 
service). In previous sections of this tutorial, you used both of these methods to get an 
initial object reference.  

Often, however, there is no naming service available in the distributed environment. In 
that situation, CORBA clients use a stringified object reference to find their first 
object. A stringified object reference is an object reference that has been converted 
to a string so that it may be stored on disk in a text file (or stored in some other 
manner). Such strings should be treated as opaque because they are ORB-
implementation independent. Standard object_to_string and string_to_object 
methods on org.omg.CORBA.Object make stringified references available to all 
CORBA Objects. 

Example: 

// Ejemplo conversion a String de una referencia 
// Lado Servidor 
// ... 
 
 ImplContador unObjetoContador = new ImplContador(); 
 org.omg.CORBA.Object refObjCORBA = 
  rootPOA.servant_to_reference(unObjetoContador); 
 Contador refContador = ContadorHelper.narrow(refObjCORBA); 
// ... y exporta su referencia en un fichero: 
try { 
 String ref = orb.object_to_string(refContador); 
 String refFile = "Contador.ref"; 
 java.io.PrintWriter out = new java.io.PrintWriter( 
    new java.io.FileOutputStream(refFile)); 
    out.println(ref); 
    out.close(); 
} catch(java.io.IOException ex) { 
 ex.printStackTrace(); 
 System.exit(1); 
} 
 
 
 
 
 
 
 
 
 
 
 



// Ejemplo conversion a String de una referencia 
// Lado Cliente 
// ... 
org.omg.CORBA.Object refObjCORBA = null; 
try { 
 String refFile = "Contador.ref"; 
 java.io.BufferedReader in = 
 new java.io.BufferedReader(new java.io.FileReader(refFile)); 
 String ref = in.readLine(); 
 refObjCORBA = orb.string_to_object(ref); 
} 
catch(java.io.IOException ex) { 
 ex.printStackTrace(); 
 System.exit(1); 
} 
Contador refContador = ContadorHelper.narrow(refObjCORBA); 
 



Java IDL: The "Hello World" Example 
on Two Machines 

To enable the Hello World Tutorial to run on two machines, follow the steps as directed 
in the tutorial, with the following changes. This tutorial was written for the Java (tm) 2 
Platform, Standard Edition (J2Se(tm)), version 1.4. In this example, the client, stubs, 
and skeletons are located on the client machine, and the server and name server are 
located on the server machine. This scenario can be changed to meet your needs and is 
provided simply as an introduction to one way to distribute an application across two 
machines.  

1. Create (as shown in the tutorial) and compile the Hello.idl file on the client 
machine:  

  idlj -fall Hello.idl 

2. Create HelloClient.java on the client machine. Compile the *.java files, 
including the stubs and skeletons (which are in the directory HelloApp):  

   javac *.java HelloApp/*.java 

3. Create HelloServer.java on the server machine. Compile the .java files:  

   javac *.java 

4. Start the Java Object Request Broker Daemon, orbd, which includes a Naming 
Service, on the server machine. To do this on Unix:  

   orbd -ORBInitialPort 1050 -ORBInitialHost servermachinename& 

To do this on Windows:  

   start orbd -ORBInitialPort 1050 -ORBInitialHost 
servermachinename 

Both -ORBInitialPort and -ORBInitialHost are required arguments on the 
orbd command line. This example starts the name server on port 1050, because 
on Solaris you must become root to start a process on a port under 1024. If you 
want to use a different nameserverport, replace 1050 with the correct port 
number throughout this example.  

When using orbd, the ORBD must be run on the same machine as the machine 
on which the servers will be activated. Another Naming Service, tnameserv, 
could be used if you prefer to run the Naming Service on a machine other than 
the machine on which the servers will be activated.  

5. On the server machine, start the Hello server, as follows:  



   java HelloServer -ORBInitialPort 1050 

If you used a different nameserverport, replace 1050 with the correct port 
number. You do not need to specify the -ORBInitialHost argument because 
the Hello server will be running on the same host as the name server in this 
example. If the Name Server were running on a different machine, you would 
specify which machine using the -ORBInitialHost nameserverhost 
argument.  

6. On the client machine, run the Hello application client. From a DOS prompt or 
shell, type:  

   java HelloClient -ORBInitialHost nameserverhost -ORBInitialPort 
1050 

Note that nameserverhost is the host on which the IDL name server is running. 
In this case, it is the server machine.  

If you used a different nameserverport, replace 1050 with the correct port 
number.  

7. Kill or stop orbd when finished. The name server will continue to wait for 
invocations until it is explicitly stopped.  

 


