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Motivation: The shortest-path problem

o What is it?
The problem of finding the path between two or more
locations with the lowest cost.

e Where does it appear?
Many problems that arise in real-world networks imply its
computation:

e car navigation systems, traffic simulations.
e spatial databases, web searching.
e Internet route planners.

e Why is it a matter of research?
Algorithms are still computationally costly.

e Which is a possible solution?
To apply parallel computing mechanisms.
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An overview to parallel computing

Use two or more devices at the same time.

Reduce the high temporal costs.

Multi-core systems:
CPUs that contain two or more all-purpose processing cores.

Many-core systems:

Devices with high number of processing units:
o Supercomputers (1#CPUs with 1#Cores)
e CPU coprocessors (XeonPhi)
e Graphics Processing Units (GPUs)

Both of them can be combined in distributed environments.

Parallel Approaches to Shortest-Path Problems for Multilevel Heterogeneous Computing 6 / 85




Parallel computing programming models
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GPUs for parallel computing

8500GT GTX 480 GTX680 GTXTB GTXTZ
16 cores — 480 — 1536 — 2880 — 5760

Hardware GpU
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e Single Processors (SP)
2 SP P
or single cores.

e Multiprocessor (SM):

Set of single processors.

Software
e GPU Thread:
Executed in a SP.

e ThreadBlock:
Set of GPU threads,
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Heterogeneous computing

Heterogeneous computing

e Computational units of different nature (e.g. CPUs & GPUs).

e Usually, different implementations for each unit type.
Looking for maximum efficiency.
e Different execution times for each unit type.

Creating system imbalances.

Load-balancing techniques

e Properly distribute the workload according to some criteria:

e Computational capabilities, available resources, ...
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Research question

Is it possible to develop techniques and tools to derive
efficient parallel implementations to solve Shortest-Path
problems using:

(1) The new modern Graphics Processor Units (GPUs)
and their corresponding tuning techniques, and

(2) Heterogeneous environments composed by such

hardware accelerators together with traditional
CPUs?
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The SSSP problem
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Brief introduction to graph theory |

NODES {v € V} gz
(n=1VI) :

e cities

e stations

e intersections
EDGES {e € E}
(m = |E|)

e streets

e connections
between nodes
PATH {P=<s,...,u,v,...,t >}
e sequence of nodes and edges between a source and a target.
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Brief introduction to graph theory Il

WEIGHTS w(e) s 1

3 . :
e 1 2 l
e distance N /5 20
e time 2 10 £
4
o fuel cost 55 \; x 2 6/ |5 v t
vee—@—2 7 7.2 5 3
2
N 41T 2 4 7
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WEIGHT of a  2\/* .
PATH \" / —
1
e > w(e) e
e e P . 11

SHORTEST PATH between two nodes
e path with minimum weight among all possible paths.

e e.g. red path between node s and node t.
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Single-Source Shortest-Path Problem
(SSSP)

e Graph G = (V,E).
e Weight function: w(e):e € E.

° Shortest path distance

d(s, x) for every x € V.

° shortest path tree

and shortest path distances.
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Best bounds for SSSP algorithms

Weight / type | Algorithm Time complexity
Unweighted BFS O(m+n)

R>o Dijkstra O(m+ nlog n)
Ri.c Goldberg O(m+ nlog C)

R / Und Pettie O(m + nloglog n)

R Bellman-Ford O(mn)

Z>o / Und Thorup O(m+ n)

Zo..cy / Dir | Thorup O(m + nloglog min{n, C})
Z¢{0,1} Goldberg O(my/nlog min{w(e) : e € E})
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Best Bounds for SSSP Algorithms
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Dijkstra’s algorithm: Initialization step

Dijkstra algorithm steps:
e 1. Initialization

° ‘ Frontier node < s‘

s a b (9
50]o]o|o]o]x]
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Dijkstra’s algorithm: Relaxation step

Dijkstra algorithm steps:
e 1. Initialization
e 2. Edge relaxation

|6(a) = min{6(a), 3(s) + w(s, a)} |

s a b ¢
5l0]2[1[3]=]e]
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Dijkstra’s algorithm: Settlement step

Dijkstra algorithm steps:
e 1. Initialization
e 2. Edge relaxation

e 3. Settlement
e 3.1 Minimum calculation
e 3.2 Update frontier node
‘ Frontier node < b

e 4. Termination criterion

8§ a b ¢
slof2]1]3]e[x]
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Dijkstra’s algorithm: Settlement step Il

Dijkstra algorithm steps:
e 1. Initialization
e 2. Edge relaxation

e 3. Settlement
e 3.1 Minimum calculation
e 3.2 Update frontier node
‘ Frontier node + a

e 4. Termination criterion

s a b ¢
slof2]1]3]=[x]
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Dijkstra’s algorithm: Settlement step IlI

Dijkstra algorithm steps:
e 1. Initialization
e 2. Edge relaxation

e 3. Settlement
e 3.1 Minimum calculation
e 3.2 Update frontier node
‘ Frontier node + ¢

e 4. Termination criterion

s a b ¢
510]2[1]3 =[x
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Parallel SSSP approaches ([1-SSSP)

e Parallel deployment of sequential SSSP in disjoint subgraphs

e Parallelizing the internal operations:
e Inner loop: Single-vertex edge-relaxation parallelism.
e Outer loop: Multiple-vertex sequential-edge relaxation

parallelism.

Algorithm Year | Parallelization
Fine-Grain Parallel SSSP 1997 Inner
Crauser 1998 Outer
A-stepping 2003 Outer
GPU Label-Correcting 2007 Outer
GPU Parallel Dijkstra-Martin 2009 Outer
GPU Parallel Bellman-Ford 2011 Inner-Outer
Coarse-Grain Parallel SSSP 1997 Disjoint
Tang 2008 Disjoint
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Dijkstra outer loop parallelization

e Suitable for GPUs.

At each iteration i:
e Identify the unsettled nodes which §(u) cannot be reduced.

e Frontier set instead a single frontier node, in iteration j + 1.

e Perform the relaxation step of next iteration from many
frontier nodes in parallel.

e A; threshold: maximum value for a tentative distance to be
considered as a shortest path, in each iteration.

’ Martin et al. solution [23] ‘
o Aj =min{é(v) : ue U}.
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Using GPUs to solve the SSSP

problem
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Dijkstra’s algorithm implementation for

GPUs
Developed using CUDA

GPU pseudocode for main loop (Martin et al.)

1: while (A # ) do

2: gpu_kernel_relax (U, F, 0); //Edge relaxation

cudaDeviceSynchronize() ;

vec_minimals = gpu_kernel_minimum(U, §); //Settlement step 1

A = min( vec_minimals )

cudaDeviceSynchronize() ;
end while

3
4
5:
6: gpu_kernel_update(U, F, §, A); //Settlement step 2
7.
8:

Parallel Approaches to Shortest-Path Problems for Multilevel Heterogeneous Computing
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Martin et al.: Relax kernel

relax kernel
e One thread per node.
e Only outgoing edges of frontier nodes are relaxed.

e Race condition: atomic min operation needed.

GPU code for relax kernel

1: tid = thread.ld;
2: if (F[tid] == TRUE) then

3: for all j successor of tid do

4: if (U[j] == TRUE) then

5: 8[j] = atomic_min{é[j], 8[tid]+ w(tid, j)};
6: end if

T: end for

8: end if

Parallel Approaches to Shortest-Path Problems for Multilevel Heterogeneous Computing
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Martin et al.: Minimum & update kernels

minimum kernel
e Min-reduction of the tentative distances (6(u)).
e CUDA SDK reduce kernel.
e Compare_min operation instead of the addition.

update kernel

GPU code for update kernel

e One thread per node.
P 1: tid = thread.ld;

e Frontier set erased. 2: Fltid]= FALSE;
. .. 3: if (U[tid]==TRUE and §[tid] =
o Still unsettled nodes inside 'thén[' ] and o[tid]
the threshold: 4:  U[tid]= FALSE;
e Evicted from unsettled set. 5: F[tid]: TRUE;
6: end if

e Added to the frontier set.

Parallel Approaches to Shortest-Path Problems for Multilevel Heterogeneous Computing

A

28 / 85



Improvement: A bigger threshold ...

1 e Based on Crauser et al. [24]:

o Minimum weight of the

outgoing edges for each node.

C o ‘New minimum calculation:‘
A; = min{é(u)+ w(u)}
3
S
s a b ¢
5,|0|2[{1|3 ||
w1]12|3]|2].
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Improvement: ... implies more settled nodes

e Based on Crauser et al. [24]:

° Minimum weight of the

outgoing edges for each node.

° ‘New minimum caIcuIation:‘
Aj = min{d(u)+ w(u)}

° ‘ Update frontier set: ‘
for each node u with 6(v) < A;
Frontier set + a, b, ¢

S (s) ; : ; olo e More nodes settled in each
’ iteration
w| 112|132
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Our improved implementation

Differences compared to Martin et al. (GPU Martin)

minimum: Reduction of §(u) 4+ w(u) : u € U instead of
reduction of §(u) : v € U.

update: Due to bigger threshold A, settle unreached nodes
with d(u) < A instead of §(u) = A.
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Our improved implementation

Differences compared to Martin et al. (GPU Martin)

minimum: Reduction of §(u) + w(u) : u € U instead of
reduction of §(u) : v € U.

update: Due to bigger threshold A, settle unreached nodes
with d(u) < A instead of §(u) = A.

i
X | X

Parallel Approaches to Shortest-Path Problems for Multilevel Heterogeneous Computing

No differences in
relax kernel code
but in behavior:
More parallelism.

GPU

X

§

X

A
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Experimental evaluation

’Evaluate our improved solution (GPU Crauser)‘

CPU: Intel(R) Xeon E5 2620 2.1GHz, memory of 32GB DDR3
GPU (Titan): a GeForce GTX Titan Black Kepler GK110B.

e Experiment I: GPU Crauser vs. GPU Martin.

e Experiment II: GPU Crauser Opt. vs. BGL [25].

Input sets used:

e Synthetic graphs.
e Real-world and benchmarking graphs (RW&B).
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GPU Crauser vs. GPU Martin: Synthetic graphs

random98k - SYNTH - CPU vs GPU

3500 T T T T T T T T
Martin Titan —+—
CPU Crauser Xeon ---X---
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T

3000 |
2500 |

2000

Time (ms)

1500 [
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500 -

0 1

Q o

Q Q Q Q

q 6 O P S L& P & L P
Degree (logscale)
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GPU Crauser vs. GPU Martin: RW&B graphs

Kronecker - DIMACS - CPU vs GPU

100000 — : .
Martin Titan —— T
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10000 F Pl ]
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Time (ms)

GPU Crauser opt. vs. BGL: Execution times

4500
4000
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3000
2500
2000
1500
1000

random98k - SYNTH - boost vs GPU OPT

"BOOST Xeon ——
Crauser Titan opt —¥—

Synthetic graphs
e speedup up to
19x.
RW&B graphs

e speedup up to
4.76%.

o P @

N
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Memory (MB - logscale)

GPU Crauser opt. vs. BGL: Memory space
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Values for GPU configuration
parameters
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Optimizing GPU applications

Arriving to a GPU implementation is an affordable task.

Optimizing its execution is the challenging activity.

Tuning GPU configuration parameters for NVIDIA devices:

e Threadblock size
e L1 cache size

Optimize without kernel code modifications.
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Related work

e Lack of general studies.

e CUDA programming guidelines [13]:

SM

Max. Occupancy Max. Occupancy

— Use
maximum occupancy
threadblock sizes:

Max.threads /SM
Max.threadblocks | SM

512

2048

(%2}
III z

1024

KEPLER
MAX. number of
threads/SM

NOT USED

e CUDA recommendations do not always lead to optimal
performance.

e uBench and kernel characterization model [16].
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Our kernel characterization model

Code-dependent parameters [16] Graph-dependent parameters (new)

e Memory access pattern (MAp) e Size: number of vertices, n.
e Computational load ratio (CLr) e Mean fan-out degree, d(G).

e Data sharing across blocks ratio
(DSr)

e Intrincate dependences among these parameters.

o Prediction model [16] refined and extended.
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GPU Crauser vs. optimized: Synthetic graphs

random98k - SYNTH - Kernel characterization
300
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SRS
S s &
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e Predicted values leads to improvements up to 22.9%.
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The APSP problem
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All-Pair Shortest-Path problem (APSP)

e Graph G = (V,E).
e Weight function: w(e):e € E.

o Shortest path distances d(u, v) for

every u,v € V.

° n shortest-path trees and

shortest path distances.
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APSP different sequential approaches

Dynamic Programming

e Floyd-Warshall algorithm

e Temp. cost: O(n%)
e Spatial cost: O(n?)

e Dense graphs
m € ©(n?)

Parallel Approaches to Shortest-Path Problems for Multilevel Heterogeneous Computing

Productivity Approach
e nxSSSP algorithm

% % 7
CU: =——=) === )=——= ) coo
-

SSSP algorithm
execution time

e Temp. cost: O(mn + n?log n)
e Spatial cost: O(n)

e Sparse graphs
m € O(n)
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Parallel APSP approaches ([1-APSP)

5uluznl‘ml solutions

-

Dynamic-programming Solution
Floyd-Warshall

—_
Productivity-based Solution
n x SSSP % % Y%
CU: J === ] oo
|

Y Parallel solutions TI-APSP

Parallel Dynamic-programming Solutions

( Source-partitioned Solutions )

[ ]

2004 Micikevicius
2007 Harish et al.

Blocked FW

2008 Katz and Kider
2009 Harish et al.
2012 Wu

2014 Djidjev et al.

2009 Harish et al.

[t ]«

2009 Bulug et al.
2009 Harish et al.
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[N-APSP approaches

Sequential solutions

el

Dynamic-programming Solution
Floyd-Warshall

Productivity-based Solution
n x SSSP

% % Y
cu: § = = ] eeo

’
Source-parallel Solutions

Y Parallel solutions II-APSP

Parallel Dynamic-programming Solutions

J n x (IT - SSSP) 2007 Harish et al.
2004 Micikevicius 7,

2007 Harish et al. CU:.;' -;---,-

2008 Okuyama et al.
Blocked FW -

/& x (IT- MSSP) 2010 Yanagisawa
sl uE Eo

2012 Wu ) CU{ 2BEF jeoe] BR Yiket

2014 Djidjev et al. =] B

- ( Partitioned Source-parallel Solutions )

2000 Harishet al. L @- (nx 1 sssey) > (- H-(nx (11- sSSP))= IH-APSP
[owman ]« | o -

2009 Bulug et al. U,
2009 Harish et al.

. Parallel Heterogeneous solutions
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[N-APSP: Productivity-based solutions |

e Source-partitioned Solutions,
parallelize the serial n executions of a sequential SSSP.

( I - (n x sssm)

CU;: UyE====a) coo =3 T,
CUZ: 7}2._; oco;

° 7}11-7(+1

CU,C: (24— WA —
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[N-APSP approaches

Sequential solutions
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Parallel Dynamic-programming Solutions
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2009 Harish et al.
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2014 Djidjev et al.

2009 Harish et al.

Gaussian Elim. | «—

2009 Bulug et al.
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Parallel Approaches to Shortest-Path Problems for Multilevel Heterogeneous Computing

CU,: 1},(—, -.-'— Uy
1999 Diament et al.

2006 Sen

Dn-xr 1

a et al.

(

Partitioned Source-parallel Solutions

)

L) IT - (n x (IT - SSSP))

L»(n- -(nx(II- SSSP)))I IIH-APSP

Parallel Heterogeneous solutions

A

49 / 85



[N-APSP: Productivity-based Solutions ||

e Source-parallel Solutions,
involve the execution of a parallel SSSP algorithm.

e (1) Sequential Source-parallel Solutions,
sequential n executions of parallel SSSPs

(n x (I1 - SSSP) ) Cn/& X (I1- MSSFD

v %0 & v B =
K

cu: BB ) o) !
=HE TR R =

%= =R
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N-APSP Approaches

Sequential solutions

e

Dynamic-programming Solution
Floyd-Warshall

Productivity-based Solution

nx SSSP Cu: ;_'_'cl.

i i
|

Y Parallel solutions II-APSP /\
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[N-APSP: Productivity-based Solutions IlI

e Source-parallel Solutions,
involve the execution of a parallel SSSP algorithm.

e (2) Partitioned Source-parallel Solutions,
parallel n executions of parallel SSSPs using:

homogeneous heterogeneous
computational units (CUs) computational units (HCUs)

II - (n x (IT - SSSP)) @-H-(nx(ﬂ-SSSP))El]H-APSP

'UJE'E'E; ooy A nx HCU;: (= H = — O — I — |

UzE E E'uuu’ E%z@d HCUZ = = jeco) ==} ==

HCU;: -' 3 %cootp
.vxsl BB el %

I o} 1
HCU,C:E';E;E';MO;E
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Using GPUs to solve the APSP
problem
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Goals

|So|ve the APSP problem by:

Serial executions of

a parallel algorithm

using a single device.

Improve the approach with the Concurrent Kernel execution (CK).

Available resources Available resources
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Serially-executed, source-parallel solutions

‘ Single kernel solution: ‘ Cn x (II - SSSP) )

e n serial executions of v, U 7,

our GPU Crauser solution. (SiEN— M — o — ML —

CK improvement:
Cn/& x (IT - MSSPD
e k concurrent kernels.
(% 7,
e Each CK — different SSSP task. 4= B Yk
N 1 ¢ cu 7)2:. 1°°°; _:7}11—@1

e n/k serial executions o UKF . v,

our GPU Crauser solution.
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Serially-executed, source-parallel solutions

‘Single kernel solution:‘

(]

£

e n serial executions of s
3

our GPU Crauser solution. g

CK improvement:

e k concurrent kernels. v
o Each CK — different SSSP task. §
3

]

e n/k serial executions of &

our GPU Crauser solution.

Available resources

< >
relax v, |
Sync
min v, sync
Sync
relax v, S
ync
L min v, |

Available resources

- >
relax v, relax v, | relax v;
V3
Sync
minv, | minv, | minv;
Sync
|Sync
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Experimental evaluation

’Evaluate the Concurrent kernel approach vs. single kernel

2 GPUs (Kepler GK104, Fermi GF100)

Experiment:

e Exhaustive combination of all key values for:

e Number of concurrent kernels
e Threadblock size
e L1 Cache state

e Study I: CK performance impact.
e Study II: CK influence on GPU conf. parameters prediction.

e Study Ill: Validity of the prediction model, and usefulness for
APSP.
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CK performance impact and influence

Increased L1-cache | Normal L1-cache | Without L1-cache memory
13 11024 e 256 e[ T 71024 -men’ 256 e
12l . 768 o 192 0]
o 512 —e— 128
= 11l . 384 e % |
12}
e}
c
S 10f ]
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23 i
© or
£
= 8r ]
1 2 4 8 16 32 1 2 4 8 16 32
(24k-d2 graph; minimum kernel) Number of concurrent kernels
550
. 500
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| %\ 400
e Performance gain of up to 52.8%. 5 as0
S 300
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150
Study II: 100
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. - 0 1 2 4 8 16 32
e Predictions are not affected. # of concurrent kemels  (98k-d200-relax)
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Validation and usefulness
Study IlI:
e Correct predictions.
o Global performance gains in the range [33.7% — 58.5%] for Kepler.
e Global performance gains in the range [21.5% — 53.9%)] for Fermi.
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Execution times of the different APSP scenarios (Fermi architecture)
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Graph scenarios (legend: size - fan-out degree)
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Using heterogeneous computing to
solve the APSP problem
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Goals

’Solve the APSP problem by:

Parallel execution of
parallel SSSP algorithms

using heterogeneous systems.

Improve by using load-balancing techniques. ‘

e Properly distribute the workload according to some criteria:

e Computational capabilities, available resources, ...

e Depending on when the distribution is done:

e Static: previously to the computing
e Dynamic: during the computing
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Our parallel-executed, source-parallel
solution

‘ Heterogeneous solution: ‘ @-H-(nx(H-SSSP)) = ITH-APSP
U B B R BB

. . HCUZ:—;—;NO,'—;—
our GPU Crauser impl. in GPUs, and  HOU;: ==} ==} ¢} ===

e parallel executions of

the sequential version in CPU-cores.  Hou:EF; R EF; ---; B2

(Load—balancing policies:

e Equitable Scheduling. e Work-retrieving-queue Sched.
e Static. e Dynamic.
e Equal workspace distribution. e Centralized queue.
e Ignores computational e Each unit retrieves a task
capabilities. when idle.
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Experimental Evaluation

’Evaluate the Heterogeneous system vs. One GPU

4 i7-CPUcores@3.2 GHz with hyperthreading, and
2 GPUs (Kepler GK104, Fermi GF100)

e Experiment I: complete APSP.
e Workspace: n SSSP-tasks.
e Tricky graphs 1M nodes due to Martin et al.:
® Leads to 2 kind of shortest path trees.
e 2 kind of tasks: heavy and light load.
e Known load distribution.

e Experiment Il: random sources.

Workspace: 512 tasks randomly selected.

Graphs ranging from 1 million to 11 millions of nodes.
Same features as in Experiment .

Unknown load distribution due to random selection.
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Experimental Results I: Complete APSP

Equitable scheduling
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Work-queue-retrieving scheduling
70000 | Wisj = Work-queue-retr. Sched.
i GPUs +
60000 j CPU cores

50000

40000

30000
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® W2GPU5+(j>4Cores)
— Similar performance.
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Experimental Results Il: Random Sources

Equitable scheduling

Work-queue-retrieving scheduling
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— Performance drops.
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Number of nodes (multiples of 220)

L W2GPUs+0Cores — 46% (1-85><).
o WoGpus+icores — 47% (1.89%).

e All — Better than reference.
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Summary

e Using heterogeneous systems is useful, obtaining up to:

e 2.86x for our graphs with a known load distribution.
e 1.89x for our graphs with an unknown load distribution.

e A previous study of the graph features is important.
e Equitable scheduling delivered the best performance when
correctly tuned accordingly with the load distribution.
e Work-queue retrieving scheduling is a safer choice when the
load distribution is unknown.
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TuCCompi Programming Model
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Programming heterogeneous systems

e Much more difficult than programming homogeneous systems.
e Aim to exploit all computational resources.

e Need to combine different kind of mainstream programming
models (CUDA, MPI, OpenMP, OpenCL, ...).
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Facilitating the heterogeneous programming

e TuCCompi programming model.
Tuned, Concurrent, CUDA, OpenMP, MPI.

e Embarrassingly-parallel problems:

o workspace divided in independent tasks,
e can be executed in parallel,
e with no communication required among them.

o lICoMP [189], OMPICUDA [190], . ..

e do not include automatic exploitation of GPU special features.
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TuCCompi novelties

e Tuning layer (T layer): Mechanisms to automatically choose
optimal values for GPU configuration parameters.

e based on provided programmer kernel characterization.

e Concurrent kernel layer: Automatic exploitation of modern
GPU features as the concurrent-kernel execution.

e TuCCompi: programing model that combines the use of:

o these two novel layers, and
o the traditional ones (e.g., MPI, OpenMP, CUDA, ...).
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Heterogeneous distributed environment

LLayer division of a heterogeneous cluster. ‘

Distributed environment

Parallel Approaches to Shortest-Path Problems for Multilevel Heterogeneous Computing 71 / 85

A



TuCCompi architecture

’ Layer deployment of TuCCompi model in a heterogeneous cluster.

Distributed environment

Desktop Desktop Laptop
( 1stlayer ) Node 1 Node 2f—«++++- —INode n MPI

‘ Shared-memory systems

l.c 2 1..c 1

eru ..o, Gpu | | OpenMP

le7]
5
2| - - CUDA
—
Concurrent
4th layer i i i
Yy Multiple Kernels Multiple Kernels Multiple Kernels Kernel
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TuCCompi Model Usage

Programmer Application

1. Main program impl.

Main program:
| | C code + TuCCompi calls

|

: = 2. User-code Plugins.
| Kernel PY plugln_Cpu
|

|

|

Characterization
e plugin_Gpu

_________ 3. Kernel characterization.

s hp - ch
el E TuCCompi E o Custom usage:
palicies = e ices @ Workload scheduling.
ol -
=l

Cluster

e Characterization plugin.
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The APSP as case study

e Embarrassingly parallel problem with n tasks (n x SSSP).

CUDA SSSP algorithm TuCCompi GPU plug-in

while (A # o0){ while (A # oo){
<<<relax>>> (...) TuCCompi_GPULAUNCH(relax, ...)
cudaDeviceSynchronize () TuCCompi_GPUSYN( )
A =<<<minimum>>> (...) — A = TuCCompi_GPULAUNCH(min, ...)
cudaDeviceSynchronize () TuCCompi_GPUSYN( )
<<<update>>> (...) TuCCompi_GPULAUNCH(update, ...)
cudaDeviceSynchronize () TuCCompi_GPUSYN( )

} }

e Kernel characterization:

’TuCCompi_KERNELCHAR(relax, 1, scatter, low, high, low);

’TuCCompi_KERNELCHAR(minimum, 1, coalesced, low, low, medium);

’TuCCompi_KERNELCHAR(update, 1, coalesced, low, low, low);‘
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Experimental scenarios

Experiment: TuCCompi's layer scalability solving the APSP problem.
A single GPU (3rd, 4th and T layers).
Two GPUs, (2nd, 3rd, 4th and T layers).

Heterogeneous Node (2nd, 3rd, 4th and T layers).
® Pegaso: with 2 GPUs and 8 CPU-cores

Heterogeneous Clusters (all layers).

e Small HC 10 nodes: 4 GPUs and 48 asymmetric CPU-cores.
e Big HC 19 nodes: 4 GPUs and 180 asymmetric CPU-cores.

Workload scheduling used: A master-slave policy.

Concurrent kernel execution set to 4.
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Experimental Results

’ GPU vs. the heterogeneous environment:

Execution time of the different computing environments

1GPU ——
140 - 2GPUs -~

Pegaso -x-
120  SmallHC o

Big HC --=---
100

1000K
Number of Graph nodes
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Functionality:

® The addition of many less-powerful
computational units enhances the
total performance gain similarly as the
addition of a GPU device.

Scalability:

® The execution times are reduced as
more computational resources are used.

® The use of TuCCompi has a lower
communication overhead less
than the 1 %.
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Summary

TuCCompi: A multilayer deployment model that helps the program-
mer to easily obtain flexible and portable programs for heterogeneous
systems. It automatically detects at run-time the available compu-
tational resources and exploits hybrid clusters.

Offers to the programmer easy mechanisms to:
e Select proper values for GPU configuration parameters just
characterizing the nature of the kernels.
e Exploit a concurrent-kernel execution.
e Deploy the solution using the traditional layers.
e Change the:

o Algorithm that solves the problem.
e Scheduling policy.
e Characterization values.
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Conclusions
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Research question

e This PhD. Thesis answers the research question affirmatively.

It is possible to develop techniques and tools to derive
efficient parallel implementations to solve Shortest-Path
problems using:

(1) The new modern Graphics Processor Units (GPUs)
and their corresponding tuning techniques, and

(2) Heterogeneous environments composed by such
hardware accelerators together with traditional CPUs.
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Thesis conclusions

e This Ph.D. Thesis gives an answer to these problems by
providing:

e a new improved GPU-based solution for the SSSP problem.
e tuning heuristics to optimize GPU executions.

e implementations and studies of productivity-based APSP
approaches.

e a multilayer programming model to ease the implementation
and deployment of this kind of problems.
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Kernel characterization model extension, and the development of
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Future directions |

Shortest Path context

e Algorithmic modifications to take advantage of new GPU
parallel capabilities, or for the emerging XeonPhi devices.

GPU Tuning context

e More model extensions using other graph characteristics.

e Adaptation of code analyzers to automatically obtain the
kernel characterizations.
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Future directions Il

TuCCompi context

e Optional auto-tuning behavior for the concurrent kernel
execution.

e Comparison against other libraries/frameworks specifically
designed for particular problems or input sets.

e Addition of other functionalities provided by tools developed
inside our research group, such as the data partition.
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