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Abstract—This paper studies the impact of using automatic
data-layout techniques on the process of coding the well-known
multigrid MG NAS parallel benchmark. We describe the se-
quential problem in detail, and discuss the parallel version and
its optimizations. Then, we implement the parallel algorithm
using Hitmap, a highly-efficient modular library for hierarchical
tiling and mapping of arrays. We describe how to use the
library plug-in system to add a new data-layout module that
encapsulates a generalization of the data-alignment policy of
the MG benchmark. The module system applies this policy to
automatically adapt the data distribution and communication
code to any grain level. The impact of using these techniques
is qualitatively and quantitatively described in terms of develop-
ment effort and performance. Our results show that it is possible
to introduce flexible automatic data-layout techniques in current
parallel compiler technology, without sacrificing performance.

I. INTRODUCTION

Data distribution and layout is a key part for any parallel
algorithm. Many problems may benefit from a multilevel
data partition. Multigrid methods are a typical example. They
are efficient computations of accurate numerical solutions
to many scientific and engineering problems. Their parallel
implementations have been widely studied (see a classical
survey in [1]). To improve performance and scalability, the
typical V-cycle implementations exploit different levels of
parallelism. The same data partition and layout techniques are
applied at different levels of the computation, with different
grains. When the coarsest grids are partitioned, several issues
about data location and communications arise, complicating
the direct application of the same data-partition scheme.

While many languages offer a predefined set of one-
level, data-parallel partition techniques (e.g. HPF [2], [3],
OpenMP [4], UPC [5]), it is not straightforward to use
them to create a multiple-level distributed layout that adapts
automatically for different grain levels. On the other hand,
message-passing interfaces for distributed environments (such
as MPI [6]), or low-level thread-manipulation interfaces (such
as PThreads [7]), allow to develop carefully-tuned programs
for a given platform, but at the cost of a high development
effort [8], [9]. The reason is that these interfaces only pro-
vide basic tools, forcing the programmer to manually code
the details of data distribution and communication, with a
process/thread centric view. New parallel languages propose

the use of a global-view approach, with more flexible and
explicit mechanisms to deal with locality (e.g. Fortress [10],
Chapel [11]). A similar approach is presented in Trasgo [12],
a source-to-source parallel compilation system.

The codes generated by Trasgo are supported by an exten-
sible run-time library named Hitmap, a highly-efficient library
for hierarchical tiling and mapping of arrays. It is independent
enough to be used directly, as a first abstraction layer to
compute, automatically map, and communicate array tiles at
different levels of parallelism, greatly reducing the develop-
ment effort comparing with manually-tuned implementations.
Moreover, it allows the programmer to code new partitioning
or data-layout techniques, and include them in the library using
a system of two independent types of plug-ins: Topologies,
and Partition layouts. They hide all low-level details to the
programmer, avoiding the need to reason in terms of the
number, or indexes, of physical processors. They are compiled
externally to the library and invoked from the application code
by name. This approach decouples the algorithm implementa-
tion from the data-partitioning or layout techniques selected.
The programmer may test new mapping combinations of
virtual topology vs. data partitioning functions, changing only
the plug-in names in the whole code. This helps to implement
higher levels of compiler technology to find the best mapping
combination, using autotuning techniques.

In this paper we measure the impact of using automatic
data-layout and communication calculation techniques to code
the well-known multigrid MG NAS parallel benchmark. We
analyze the reference implementation, and compare it with an
alternative Hitmap code. MG is a particularly good example
for this purpose, because it presents differences on the appli-
cation of the data-layout on the coarser levels of parallelism,
and its specific data alignment scheme needs to be coded in a
new plug-in. Our experimental results show that the implemen-
tation of MG, using Hitmap, offers the same performance as
the NAS implementation with a significant lower development
effort. Moreover, this study shows that the Hitmap library may
achieve similar performance results as sophisticated parallel
languages and compilers (see comparative study in [13]), but
with a higher level of flexibility to develop and apply new data
layouts. Thus, it is a good candidate to be a lower layer for
more complex or sophisticated parallel compiler technologies.
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This paper is structured as follows: Section II describes
the main features of the Hitmap library. Section III reviews
the MG benchmark algorithm, including the “paper and pen-
cil” specification, the parallel implementation details, and
discusses several optimizations. Section IV describes several
different MG implementations, including the NAS Fortran
implementations, a new C version, and the Hitmap imple-
mentation. Section V shows experimental results concerning
coding complexity and performance for the different MG
implementations. Finally, Section VII concludes the paper.

II. THE HITMAP LIBRARY

Hitmap is a highly-efficient library for hierarchical tiling
and mapping of arrays. It is designed to simplify the use of
a global or local view of the parallel computation, allowing
the creation, manipulation, distribution and efficient commu-
nication of tiles and tile hierarchies. In Hitmap, data-layout
and load-balancing techniques are independent modules that
belong to the plug-in system. The techniques are invoked from
the code and applied at run-time when needed, using internal
information of the target system topology to distribute the
data. The programmer does not need to reason in terms of the
number of physical processors. Instead, it uses highly abstract
communication patterns for the distributed tiles at any grain
level. Thus, coding, and debugging operations with entire data
structures are easy.

The Hitmap library supports functionalities to: (1) Generate
a virtual topology structure; (2) mapping the data grids to the
different processor with chosen load-balancing techniques; (3)
automatically determine inactive processors at any stage of the
computation; (4) identify the neighbor processors to use in
communications; and (5) build communication patterns to be
reused across algorithm iterations.

Hitmap is designed with an object-oriented approach, al-
though it is implemented in C language. It defines several
classes, implemented as C structures and functions. It uses
a compact representation for contiguous or stride domains
of indexes, similar to Fortran90 or MATLAB, generalizing
the contiguous rectangular regions of tools like KeLP [14].
A Signature is a tuple of three numbers (starting index,
ending index, and stride) representing a non-contiguous but
regular subset of indexes in a one-dimensional domain. A
Shape is a set of n signatures representing a selection of
indexes in a multidimensional domain. A Tile is an array
whose indexes are defined by a shape. Tiles may be declared
directly, or as a selection of another tile. Thus, they may be
created hierarchically or recursively. Tiles have two coordinate
systems to access their elements: Array coordinates and tile
coordinates. Array coordinates associate elements with their
original domain indexes, as defined by the selection shapes.
Tile coordinates renumber the indexes to start always at 0 with
no stride. In Hitmap, a tile may be defined with or without
allocated memory. This allows to declare and to partition
arrays before assigning memory to them, finally allocating
only the parts mapped to a given processor.

zk = Mkrk:
if k > 1:

rk−1 = Prk (Restrict residual)
zk−1 = Mk−1rk−1 (Recursive solve)
zk = Qzk−1 (Prolongate)
rk = rk −Azk (Evaluate residual)
zk = zk + Srk (Apply smoother)

else:
z1 = Sr1 (Apply smoother)

Figure 1: MG algorithm and multigrid operations.

The library provides a Topology plug-in class to encapsulate
simple topology building functions. These modules allow to
create virtual topologies from physical topology information
queried internally at initialization time. Finally, the Layout
plug-in modules allow to compute a partition of a shape
domain over a virtual topology. There are some predefined
layout modules in the library, but it allows to easily create
new ones. The resulting layout objects have information about
the local part of the input domain, neighbor relationships,
and methods to get information about the parts mapped to
other processes. Thus, they encapsulate data- or task-parallel
mapping decisions for load-balancing and neighborhood infor-
mation. The information in the layout objects may be exploited
in several abstract communication functionalities, which may
be composed in reusable patterns. The library is built on top of
the MPI communication library, for portable communication
and synchronization on different architectures. It internally
exploits several MPI techniques that increase performance.

III. MG BENCHMARK

Regarding the benchmark used, the NAS MG Benchmark
is a structured multigrid kernel to solve a discrete Poisson
problem. MG is part of the NASA Advanced Supercomputing
(NAS) benchmarks, developed to measure the performance of
parallel computers [15]. The NAS Parallel benchmarks are
well-known and widely-used applications to compare perfor-
mance for different compilation techniques, communication
libraries, implementations, or architectures.

A. Sequential algorithm

The NAS MG benchmark performs iterations of a V-
cycle multigrid algorithm to solve a discrete Poisson problem
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∇2u = v on a cubical grid with periodic boundary condi-
tions [16]. Each iteration consists of evaluation of the residual
(r), and the application of the correction:

r = v −Au
u = u + Mkr

where A is the trilinear finite element discretization of the
Laplacian ∇2; M is the V-cycle multigrid operator; and k =
log2(d), where d is the grid dimension size.

In Fig. 1 we show the algorithm for a given level, and
a representation of how the operators are linked through the
multigrid levels. The four operators represented in the figure
are: P (Restriction), Q (Prolongation), A (Evaluation), and S
(Smoother). on one dimension [16]. All these operators are
easily implemented as 27 coefficients arranged as a 3× 3× 3
cubical array.

B. Parallel algorithm

In this section we describe the parallel version of the algo-
rithm. The MG code distributes the data across p processors,
where p is a power of two. It divides the original grid in
contiguous blocks. Since in each level there is a different grid,
all processor will have a set of blocks, one for each level. The
processors are arranged in a 3D topology. It does not need
to be perfectly cubic, but in each dimension the number of
processors must be power of two.

Because both, the number of processors in any dimension,
and the grid sizes are defined as power of two, all the
processors have an equal size block. However, when there are
more processors that data to spread (on the coarser grids),
some processors will not have any elements to process, and
they will become inactive during the computation of that level.

To perform the operations in the border elements of the
block, each processor also needs part of the data assigned to
its neighbors. This data is usually called ghost zone or ghost
elements. We name border elements to the area immediately
inside the boundary of each block. Therefore, the ghost
elements are border elements in the neighbors.

Figure 2 shows the application of the Q operator on a
1D grid layout at different levels. In the left side of the
figure, we can see the layout for a sequential multigrid with 3
levels. In the right side, we can see the distribution in blocks.
The gray squares are the ghost elements. After calculating
the residual, smoother, or restriction operations, each process
needs to rebuild the ghost zone with the values updated in
another processor. Thus, they need to exchange their border
elements with the neighboring processors.

At the bottom level (coarse grid) there are not enough data
for all processors, and processor 1 and 3 remain inactive.
The neighborhood relationship changes because it is necessary
to skip the inactive processors during the border elements
exchange. Moreover, when coming back in the V-cycle, the
reactivated processor have no elements. They receive two
elements from the left neighbor and only one element from the
right neighbor. Thus, the communication patters are different
for some processors at given levels.

IV. IMPLEMENTATIONS

The reference code of the MG NAS benchmark is writ-
ten in Fortran, using the MPI message-passing interface for
synchronization and communication. In this section we de-
scribe three different implementations: The NAS MG original
code, a manual, optimized translation to C language, and
an implementation that uses the automatic data-layout and
communications library called Hitmap.

A. NAS implementation

The NAS MG reference code uses some implementation and
optimization techniques which are worthwhile to describe.

1) Memory usage: All the coarse grids for each level are
allocated using a single, big array. It uses index operations
based on the level of the grid and the grid position to locate
and access data.

2) ZU optimization: To reduce memory usage and the num-
ber of operations of the computation, the MG reference code
includes an optimization which we named ZU optimization.
The u array is overlapped with the z array at the top level
(zkmax ). The default operations that execute the prolongation
at the top level are shown below, together with the application
of the correction as it is defined by the algorithm.

zk = Qzk−1 ( Prolongate from k − 1 to k )
rk = rk −Azk ( Valuate residual )
zk = zk + Srk ( Prolongate )
u = u + zk ( Apply correction)

The optimization substitutes these operations by:

zu = zu + Qzk−1

ru = v −Azu

zu = zu + Sru

Since the u array is set to 0 at the beginning, the sum
operation can reuse values obtained previously.

3) Subexpression cache optimization: When applying the
27-point stencil of an operator, part of the partial sums
computed for one element is also needed for its neighbors.
The NAS implementation reduces a great number of redundant
operations by caching subexpressions (partial sums) which are
reused when computing subsequent elements.

4) Null coefficients optimization: The Evaluate and
Smoother operators have some null coefficients. One of the
simplest NAS optimizations is to skip the calculation of the
contribution of these coefficients.

5) Additional improvement to NAS MG code: We have
found further room for improvement that can be applied
to the NAS Fortran reference code. It is possible to avoid
cleaning communication buffers before receiving data. This
improvement does have a noticeable impact in terms of
benchmark performance. Our experimental results show that
this unnecessary operation slows down the overall performance
up to 20%.
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Figure 2: Application of Q operator for a partition on a given grid dimension.

B. Efficient C implementation

The NAS MG implementation using MPI is written in
Fortran, while the Hitmap library is written in C. In order
to better compare the codes, we have manually translated the
NAS MG benchmark to C language, using the C-OpenMP
version of the NAS benchmarks as starting point, including the
MPI communication structure of the original Fortran version.
We have taken into account the particularities of both lan-
guages, such as differences on function interfaces semantics,
array indexes realignment, and storage of data structures. This
version includes the same optimizations as the original Fortran
and C-OpenMP versions.

C. Hitmap Implementation

The Hitmap implementation uses the main computation and
other sequential parts of the direct C translation, adapting them
to work with Hitmap tiles. Data-layout and communications
have been generated directly using Hitmap calls. In this section
we discuss the Hitmap techniques needed to automatically
compute the data-layout and exploit reusable communication
patterns in the MG code.

In Fig. 3 we show an excerpt of the Hitmap code executed at
the start of the application to precompute the data layout and
communication patterns. The first two lines are executed only
once, to create a 3-D virtual topology of processors, using the
internal information of the real topology obtained by the low-
level layer (in MPI, the local identifier and the whole number
of physical processors).

The rest of the code is executed in a loop for each
grid level k. First, a shape which defines the whole grid
is constructed (lines 5 to 7). The data-layout information is
generated automatically with only one Hitmap function call
(line 10). The layout parameters are: (a) the layout plug-in
name, (b) a virtual topology of processors, and (c) a shape
with the domain to distribute. The result is a HitLayout
object, containing the shape assigned to the local processor and
neighbors information. The function in line 11 simply adds the
circular shift property to the neighborhood relationship. The
layout function is applied to all dimensions of the input shape
by default. An optional parameter may indicate the application
of the layout function to only a given dimension. Specific plug-
in modules may define extra parameters. We further discuss
the plug-in module for the MG benchmark below.

In line 14 the domain shape of the local block is obtained
from the layout object, and expanded by two elements on
every dimension to contain the ghost zones. This shape is
used to declare and allocate the local block as a tile of
double elements (line 18). All the communications needed
for border exchange, and inactive processor reactivation are
encapsulated using Hitmap communication patterns. In Fig. 3,
line 22, a new empty communication pattern is defined, whose
communication actions will be executed in order. Finally, lines
25 to 43 add communication actions to the pattern for this local
processor. For each dimension, we determine the neighbors
and create a shape to select which part of the tile is sent or
received. Since the layout object contains all the information
about shapes, active processors, and neighborhoods, the code
between lines 25 to 43 are common to both, active and inactive
processors, at any level of the multigrid computation. Data
marshaling and unmarshaling is automatized by the actions of
the communication patterns. When a processor needs to ex-
change the borders, it simply executes the appropriate pattern
for the level with a single Hitmap function call whose only
parameter is the pattern (not shown in the figure). The patterns
are reusable through all the algorithm iterations.

Finally, it is worthwhile to note that, in NAS MG, array
accesses are done calculating array indexes manually on a
flattened array. In the Hitmap version, accesses are simplified
from the programming point of view through the use of tile
access macros.

D. Building a layout plug-in

The extensible Hitmap plug-in system allows the pro-
grammer to create new topology and layout modules. MG
needs a blocking layout with an application-defined policy to
determine inactive processors on the coarsest levels.

Hitmap have two types of data-layout modules with a sim-
ilar interface. The simplest one calculates appropriate slicings
of index domains which may be expressed as a signature,
like blockings, or cyclic. The current version of the Hitmap
library provides two different blocking modules: Blocks, and
BlocksF. Both modules balance the partition in the same
way when there are more domain elements than processors
on a given dimension. However, when there are not enough
domain elements, Blocks concentrates the domain elements on
the lower processor indexes of the dimension, while BlocksF
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1 /* 3D Array Topology */
2 HitTopology topology = hit_topology(plug_topMesh3D);
3

4 /* Create shape for global cubic grid */
5 grid_size_k = GRID_SIZE / pow(2, k);
6 HitSig sig = hit_sig(0, grid_size_k - 1, 1);
7 HitShape grid = hit_shape(3, sig, sig, sig);
8

9 /* Layout */
10 HitLayout layout = hit_layout(plug_layBlocksL, topology, grid);
11 hit_layWrapNeighbors(&layout);
12

13 /* My block */
14 HitShape block_shape = hit_shapeExpand(hit_layShape(layout) , 3, 1);
15

16 /* Allocate blocks */
17 HitTile_double block_v;
18 hit_tileDomainShapeAlloc(&block_v, sizeof(double), HIT_NONHIERARCHICAL, block_shape);
19 ...
20

21 /* Compute communication patterns for border exchange */
22 HitPattern pattern_v = hit_pattern(HIT_PAT_ORDERED);
23 ...
24

25 for(dim = 0; dim < 3; dim++){
26

27 /* Get neighbor location */
28 HitRanks nbr_l = hit_layNeighbor(layout, dim, -1);
29 HitRanks nbr_r = hit_layNeighbor(layout, dim, +1);
30

31 /* Shape for the face to Give and to Take */
32 HitShape faceGive_l = hit_shapeBorder(block_shape, dim, HIT_SHAPE_BEGIN, 0);
33 HitShape faceTake_r = hit_shapeBorder(block_shape, dim, HIT_SHAPE_END, 1);
34 faceGive_l = expand_shape(faceGive_l, dim, 1);
35 faceTake_r = expand_shape(faceTake_r, dim, 1);
36

37 /* Add communication action to pattern */
38 hit_patternAdd(&pattern_v,
39 hit_comSendRecvSelectTag(layout, nbr_l, &block_v, faceGive_l,
40 HIT_COM_ARRAYCOORDS, nbr_r, &block_v, faceTake_r,
41 HIT_COM_ARRAYCOORDS, HIT_DOUBLE, tag(0)));
42 ...
43 }

Figure 3: Construction of the data layout and communication patterns for MG.

creates even groups of processors and assigns each domain
element to the First processor of each group. The other
processors are marked as inactive on the layout object.

MG distributes the data in blocks. However, MG operations
are designed to keep maximum locality on coarse grids when
data elements are on the right, and inactive processors on the
left, for each group of processors. At bottom level in Fig. 2 we
can see an example where there are only two data elements to
distribute among four processors. The layout module should
create two groups (1-2 and 3-4) but only processors 2 and 4
will have data elements to work with.

Instead of modifying the data-alignment and the indexes
used to apply operators in the application code, it is easier
to build a new layout plug-in for the library. We named it
BlocksL (Blocks with active leader at the Last processor of
the group). A new plug-in is defined by two functions, one to
calculate the proper slicing, and another to define the neigh-
borhood relationship (skipping possible inactive processors),
for one dimension domain. The plug-in system systematically
applies these functions to the required dimensions.

Let P be the number of virtual processors on a given
dimension, p the index of the local processor, and D the
number of domain indexes to be distributed on the same

dimension. Let S = (b, e, s) be the signature expressing the
range of domain indexes to distribute, from b to e with stride
s. Active processors are characterized by

bp×B/P c 6= b(1 + p)×B/P c

Let a = 1 if B > P , and 0 otherwise. For the active proces-
sors, the signature that defines their local domain indexes is
S′ = (b′, e′, s′), where

b′ = bp×B/P c × s + b

e′ = ((p + a)× bB/P c − a)× s + b

s′ = s

The implementation of the function that calculates the local
block signatures is shown in Fig. 4. It receives four parameters:
(1) The processor index in the dimension; (2) the number
of processors in the dimension; (3) the signature with the
domain to distribute; and (4) a pointer to a signature to return
the result. The function calculates the begin, end, and stride
that defines the local block on the given dimension, returning
TRUE if the local processor is active, and FALSE otherwise.

More sophisticated partition modules may define extra pa-
rameters. For example, some modules receive an estimation
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1 int hit_layout_plug_layBlocksL_Sig(int procId, int procsCard, HitSig in, HitSig *out ) {
2 int blocksCard = hit_sigCard( in );
3 double ratio = (double)blocksCard / procsCard;
4 double beginFrac = procId * ratio;
5

6 /* DETECT NON-ACTIVE VIRTUAL PROCESS (NOT ENOUGH LOGICAL PROCESSES) */
7 if ( floor(beginFrac) == floor(beginFrac+ratio) ) {
8 (*out) = HIT_SIG_NULL;
9 return FALSE;

10 }
11 else {
12 /* COMPUTE SIGNATURE */
13 (*out).begin = (int)beginFrac * in.stride + in.begin;
14 int adjust = (blocksCard > procsCard) ? 1 : 0;
15 (*out).end = (((procId + adjust) * (int)ratio ) - adjust) * in.stride + in.begin;
16 (*out).stride = in.stride;
17 return TRUE;
18 }
19 }

Figure 4: Plug-in function to generate a blocking partition compatible with MG, for any dimension.

1 int hit_layout_plug_layBlocksL_neighbor(int procId, int procsCard, int blocksCard, int shift, int wrap) {
2 /* COMPUTE ACTIVE NEIGHBOR */
3 double ratio = (double) blocksCard / procsCard;
4 if(ratio > 1) ratio = 1;
5 int neighIdAct = (int)(procId * ratio) + shift;
6 int activeProcs = min(procsCard,blocksCard);
7

8 /* CHECK IF THE NEIGHBOR IS OUT OF THE PROCESSORS RANGE: APPLY WRAPPING */
9 if ( neighIdAct < 0 || neighIdAct >= activeProcs )

10 if(wrap != HIT_WRAPPED) return HIT_RANK_NULL;
11 else neighIdAct = ((neighIdAct % activeProcs) + activeProcs) % activeProcs;
12

13 /* RETURN THE LAST PROCESSOR OF THE GROUP (IT IS LOCATED BEFORE THE NEXT GROUP) */
14 return (int) ceil((neighIdAct+1) * 1/ratio) -1;
15 }

Figure 5: Plug-in function to handle neighborhood relationships compatible with MG.

of the load associated with the domain indexes, which may
be used to generate an adaptive load-balance, or to decline
further parallelization when the grain is too fine.

The function shown in Fig. 5 defines a specific neigh-
borhood relationship that skips inactive processors for the
BlocksL layout. This function receives five parameters related
to a given dimension: (1) The processor index; (2) the number
of processors; (3) the domain cardinality; (4) the number of
shifts; and (5) a flag that indicates whether wrapping is active
for this dimension. The function returns the corresponding
neighbor coordinate for this virtual topology.

To keep generality of application, all data-layout plug-ins
should work properly for any number of processors P and
any domain cardinality B. Their functions should perform
complete mappings when P ≤ B, and inactive processors
should be identified and skipped when P > B. Thus, this
plug-in generalizes the MG partition policy, eliminating any
topology or grid dimension restrictions found in the original
implementations. Moreover, it represents a generic pattern that
is also reusable in other parallel algorithms, such as cellular
automata, block matrix multiplication, or image filtering.

Testing combinations of topology vs. layout functions is
really easy, changing only the names or parameters of the
topology or layout functions. For example, we may use a
mesh1D topology plug-in to create a one dimensional collec-

tion of coarse 3D blocks. Or use an extra parameter to restrict
the layout to specific dimensions, creating different band-based
partitions instead of 3D blocks.

V. EXPERIMENTAL RESULTS

In this section we compare the three MG versions described
above, both in terms of performance and programmability. The
codes have been run on two different architectures. The first
one, Geopar, is an Intel S7000FC4URE server, equipped with
four quad-core Intel Xeon MPE7310 processors at 1.6GHz
and 32GB of RAM. Geopar runs OpenSolaris 2008.05, with
the Sun Studio 12 compiler suite. The second architecture is
a homogeneous Beowulf cluster of up to 36 Intel Pentium IV
nodes, interconnected by a 100Mbit Ethernet network. The
MPI implementation used in both architectures is MPICH2,
compiled with a backend that exploits shared memory for
communications if available in the target system.

Due to the memory size restrictions on the Beowulf cluster
nodes, the experiments have been run using the MG C class
problem, that performs 20 iterations in a 5123 sized grid.
Following NAS practices, performance results were obtained
skipping initialization time.

We also show the performance of two additional versions:
“NAS Fortran Optimized”, consisting of the original NAS code
but without the unnecessary clean of the reception buffers
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Figure 6: Comparison of execution times between NAS For-
tran, C manual optimized and Hitmap versions.

(see Sec. IV-A), and “C optimized”, that consists of the C
version of this optimized code. These versions were developed
to isolate the effect of this optimization, since Hitmap does not
need to clean reception buffers.

Figure 6 shows the execution time of the main computation
part of these five versions. In the Geopar system all versions
surpass the original NAS code. The effect of the optimized
versions is noticeable in terms of performance, as expected.
Hitmap uses complex macro functions to expose to the native
C compiler the formula used to access tile elements. The op-
timizations obtained with the Solaris compiler are not as good
as with GCC. Thus, the sequential time on the Geopar machine
leads to slightly higher execution times of the Hitmap version
for few processors. Nevertheless, Hitmap version scales better
than the others due to its reduced communication costs. In
the Beowulf cluster (Fig. 6, bottom), the use of Hitmap leads
to even better performance figures, since communications are
more costly in this architecture, and Hitmap takes advantage of
several MPI advanced capabilities automatically. For example,
the Hitmap communication functions precalculate hierarchical
MPI derived data types for each tile. The resulting objects are
efficiently reused on each iteration. The beneficial effects of
using appropriate MPI derived data types for communications
in terms of performance has been reported in [17].

Finally, Fig. 7 shows a comparison of the Hitmap version
with the Fortran and the manually optimized C versions
in terms of lines of code. We distinguish lines devoted to
sequential computation, declarations, parallelism (data layouts
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Figure 7: Comparison of the number of code lines.

and communications), and other non-essential lines (input-
output, etc).

Taking into account only essential lines, our results show
that the use of Hitmap library leads to a 37.4% reduction on the
total number of code lines with respect to the Fortran version,
and a 23.2% reduction with respect to the C version. Regarding
lines devoted specifically to parallelism, the percentages of
reduction are 72.7% and 57.4%, respectively.

The reason for the reduction of complexity in the Hitmap
version is that Hitmap greatly simplifies the programmer effort
for data distribution and communication, compared with the
equivalent code needed to manually calculate the information
needed to be used in the MPI routines. In particular, Hitmap
avoids the use of tailored formula to compute local tile sizes,
mapping of spare data to virtual processors, and neighborhood
relationship, at the different grain levels. Moreover, the use
of Hitmap tile-management primitives eliminates some more
lines in the sequential treatment of matrices and blocks.

VI. RELATED WORK

Hitmap has been designed to provide an integrated, common
interface to exploit several techniques related to data-partition,
mapping, and communication. It introduces tools for dynamic
tile creation, parametrized by the result of data-partition plug-
ins, also adequate for recursive or domain decomposition
techniques [18]. Hitmap provides all the tools to build more
abstract data types for tiling arrays (such as HTA [19]), but
introducing a new level of flexibility and extensibility on the
data partition, and introducing a generalized hierarchy system,
suitable for irregular or adaptive grids.

Hierarchical storage similar to Flame [20] is naturally
created in Hitmap using tiles which base type is another tile.
Hitmap does not encapsulate the exact layout hierarchy on the
data type, but it allows to define it dynamically, or by another
layout function.

The automatic generation of data communication patterns
from contiguous n-dimensional overlapped regions has been
previously implemented in the KeLP library [14]. The KeLP
architecture, with object classes for expressing data partitions,
mappings, and reusable communication patterns, is further
refined in Hitmap. Hitmap transparently supports contiguous
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or stride domains for efficient cyclic distributions. It also
proposes a common interface for regular or irregular partition
techniques, effectively isolating the application code from
data-partitioning decisions which imply reasoning in terms
of the processor identification or the number of processors.
Communication objects in Hitmap are built in terms of
algorithm data dependencies and data-partition information
generated automatically at run-time, generalizing the KeLP
communication calculation, that is mainly based on domain
overlappings. Hitmap layouts only store a fixed amount of
local information, providing a more efficient and scalable
implementation.

The Chapel language proposes a transparent plug-in system
for domain partitions, although no complete specification, im-
plementation, nor experimental results are available yet [21].
Chapel proposes only one type of partition plug-ins, elimi-
nating the flexibility introduced by the topology and layout
combinations of Hitmap. It also forces to create new specific
modules for partitions which may be expressed by multilevel
combinations of layouts in Hitmap (such as block-cyclic).

VII. CONCLUSIONS

This paper studies the impact of using automatic data-
layout techniques on the process of coding the well-known
multigrid MG NAS parallel benchmark. We have implemented
the parallel algorithm with Hitmap, a highly-efficient modular
library for hierarchical tiling and mapping of arrays. The
impact of using the library is qualitatively and quantitatively
described in terms of development effort and performance.
We have also described how to use the plug-in system of the
library to add a new data-layout module, with a generalization
of the data-alignment policy of the MG benchmark, in order to
automatically adapt the data-distribution and communication
code to any grain level. We show how the Hitmap approach can
be used to generalize and encapsulate data-partition policies,
providing a higher degree of application control and flexibility
due to its decoupled mapping system, based on two types of
combinable plug-ins. Our results show that it is possible to
introduce flexible automatic data-layout techniques in current
parallel compiler technology, greatly reducing the development
effort when comparing with coding these details manually,
without sacrificing performance.

We are currently working on extending the HitShape objects
to support more irregular domains, such as sparse matrices, or
graphs. A new family of applications and partition techniques,
currently isolated on different tools, could be integrated in the
Hitmap framework. Also, we are working on other implemen-
tation alternatives that exploit different low-level parallel tools
and models than the MPI message-passing interface, in order
to generalize these results for heterogeneous environments.
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