
Runtime Support for Dynamic Skeletons
Implementation

Javier Fresno, Arturo Gonzalez-Escribano, and Diego R. Llanos
Departamento de Informática

Edif. Tecn. de la Información, Universidad de Valladolid,
Campus Miguel Delibes, 47011 Valladolid, Spain

E-mail: {jfresno, arturo, diego}@infor.uva.es

Abstract—Algorithmic skeletons have proved to be a good
solution to the problem of implementing parallel applications
with specify communication structures. They define the overall
structure of the computation, hiding the complex communication
details. Nowadays, the different frameworks available offer a
fixed set of skeletons. The programmer can implement efficient
programs if the computation and communication patterns match
the available skeletons. Because of that, the usage of skeleton
frameworks has been limited to an important but relative small
set of patterns featuring the most common parallel structures,
such as map, pipeline, farm, or wavefront.

In this paper, we present a programming model that can be
used to implement efficient and portable parallel skeletons. We
also discuss its implementation and integration into Hitmap, a
tool for hierarchical tiling and mapping. This combined proposal
allows to develop tailored static and dynamic skeletons while
still hiding implementation and communication details. The
performance of the implementation is measured against a well-
known skeleton framework.

Keywords—Algorithm skeletons, Parallel programming models,
Dynamic computation

I. INTRODUCTION

Development of parallel software is a quite complicated
task. Typically, programming for parallel machines is based
on message passing libraries such as MPI [1] or shared
memory APIs like OpenMP [2]. These solutions allow to write
portable code for different machine architectures. However, the
programmer has to deal with several non-trivial issues such
as problem decomposition, data distribution across processes,
local computation, data exchanges, load balancing, or synchro-
nization. Consequently, implementing and debugging a parallel
application can be a tedious and error-prone task.

Algorithm skeletons [3], [4] offer the programmer a differ-
ent view, based on the fact that many parallel algorithms share
common computation patterns. Skeletons are a high-level par-
allel programming model that aims to encapsulate the overall
structure of computation, hiding the complex details of parallel
applications. With skeletons, programmers do not have to write
the code to perform the coordination or communication. They
only have to provide the specific code to solve the problem,
using the skeleton as a template.

The skeletons could be classified in two groups depending
on the nature of their computation structure. A skeleton with
a static computation structure (i.e. based on a stencil) can
be implemented with coarse-grain partition techniques, using

a static scheduling that can be pre-calculated at compilation
or initialization time. However, in a dynamic computation
structure (i.e. a farm), where data dependent tasks flow through
diverse computation stages, dynamic load-balancing solutions
are needed to develop efficient programs.

Due to the advantages provided by the use of algorithmic
skeletons, a significant number of frameworks and libraries
have been developed so far. However, each one of them offers
a limited set of skeletons focused on particular techniques or
architectures. Thus, the programmer has to choose a solution
that may not be ideal for the problem and/or not portable,
betraying the original idea of the skeletons.

We propose to simplify the implementation of efficient and
portable skeletons with a simple and generic programming
model. This model is based on Petri nets [5], [6], a well-
known and established formalism for modeling and analyzing
systems. Our model represents the task flow of a skeleton
with two simple element types (processes and containers).
These elements can be combined to model the structure of
any skeleton. The model supports both static and dynamic
structures. However, we focus on dynamic skeletons since
the static ones can be more easily implemented with static
scheduling techniques.

This paper also shows how to efficiently implement the pro-
posed model. We have developed an implementation integrated
into Hitmap, a tool for hierarchical tiling and mapping of dense
arrays and sparse structures. Hitmap already offers solutions
to automatize programs with static computation structures. It
incorporates data partition techniques that automatically adapt
the program to the current data size and current available
computational units. Our extension adds support for dynamic
skeletons in Hitmap.

Experimental work has been conducted to prove that the
implementation achieves good performance with a case of
study. Any framework using the proposed abstraction layer
can take advantage of this generic model to design skeletons
while obtaining efficient implementations.

The rest of the paper is organized as follows. Section II
describes some related work in the field. A list of common
skeletons and related concepts is given in Sect. III. Section IV
discusses the design of our solution model. Section V provides
an overview of the Hitmap library, while Sect. VI shows the
implementation of our solution in Hitmap. Section VII presents
experimental work conducted to test this implementation.
Finally, Section VIII concludes our paper.

II. RELATED WORK

This section describes some related skeleton frameworks.
Each one of them has a different approach, offering a set of
skeletons, or focusing on a particular architecture. A more
exhaustive survey can be found in [7].

Some skeleton frameworks are designed with a distributed
memory model in mind. For example, the Edinburgh Skeleton
Library (eSkel) [8] is a C library that uses the standard mes-
sage passing interface (MPI). It defines several data and task
skeletons that are presented as collective operations involving
groups of processes.

Another distributed skeleton framework is the Münster
Skeleton Library Muesli [9]. It also uses MPI for communi-
cations. Muesli follows a two-tier model, where data parallel
skeletons can be nested inside task parallel ones. This library is
implemented with C++ and takes advantage of object-oriented
features, such as polymorphic types.

A successful solution for shared-memory multi-core archi-
tectures is Threading Building Blocks (TBB) [10], a library
developed by Intel. TBB provides a portable implementation
of parallel patterns, thread-safe containers, and synchronization
primitives. The core of the library is a thread pool managed
by a task scheduler. This scheduler efficiently maps tasks
onto threads, balancing the computational load using a work-
stealing algorithm.

A well-known model for processing large data sets is Map-
Reduce [11]. It is a two-stage model and it is used to process
pairs of key/value elements. There are several implementations
of this model, for example the open-source project Apache
Hadoop.

Finally, SkelCL [12] is a GPU skeleton library based on
data-parallel algorithmic skeletons. It generates OpenCL code,
that is compiled by OpenCL at runtime.

III. A SKELETON TAXONOMY

Skeletons are generally classified as data parallel and task
parallel. Previous surveys add an extra category with part
of the task skeletons class, named resolution skeletons [7],
[9]. Data parallel skeletons work with data structures and
manipulate their elements according with computation patterns
in a fine grain. Task parallel skeletons compute workflows of
tasks. Resolution skeletons solve a family of problems with
iterative phases of computation, communication, and control.

We propose to classify the skeletons in static or dynamic.
depending on the nature of their computation structure. Static
skeletons maintain the same structure during all their execu-
tion, whereas dynamic skeletons have a mutable computation
structure. Static skeletons can take advantage of static schedul-
ing methods pre-calculated during the initialization phase.
While dynamic skeletons need dynamic scheduling and load
balancing techniques.

Table I shows the relation between both classifications.
Data parallel skeletons are static. On the other hand, resolu-
tions skeletons are dynamic because their computation struc-
ture depend on the particular data being processed. Finally, we
find in the task-parallel skeletons class both static and dynamic
examples.

Static Dynamic

Data parallel map, fork, zip, reduce,
scan, stencil -

Task parallel pipeline, wavefront farm

Resolution -
divide and conquer (D&C),
branch and bound (B&B),

mapreduce

TABLE I. ALGORITHM TAXONOMY.

A. Summary of skeleton solutions

There are several design concepts that have to be taken
into account when developing a new skeleton framework.
This section collects the details introduced previously in the
literature.

a) Nesting mode: If a skeleton uses internally another
one, there are two possible nesting modes: transient or persis-
tent [8], [13]. In a transient nesting, the outer skeleton calls
an inner one to process some internal data. The inner skeleton
only exists during the invocation of the external stage. A new
instance is created each time. In a persistent nesting, the input
and output of the outer skeleton is mapped to the inner one.
The instance is persistent between invocations.

b) Interaction mode: This concept defines the relation-
ship between the skeleton input and output. There are two
possible interaction modes: implicit and explicit [8]. In an
implicit interaction mode, a skeleton produces an output for
each consumed input. In an explicit interaction mode, a stage
in the skeleton can produce an output arbitrarily without a
previous input. Moreover, a skeleton can process an input
without producing a result.

c) Task scheduler: Several skeletons such as Farm or
Divide&Conquer are composed of a set of workers. This kind
of skeleton needs a mechanism to send the tasks to workers and
to collect the results. The use of a dispatcher and a collector
is one of the possible solutions. However, it has been proved
that this solution does not achieve a good performance [14].
Instead, distributed solutions, such as the TBB scheduler [10]
or a distributed work pool [15], are preferred because they
avoid the contention and bottleneck that may arise with the
use of a centralized scheme.

d) Task distribution: A work pool requires a distribu-
tion scheme to assign task to workers. Since the time required
to process a particular task is usually not known, many work
pools assume that each one requires the same time. Under these
conditions, there are two independent distribution schemes:
Random and cyclic. Both schemes lead to similar performance
when there are a big number of tasks. However, a cyclic
distribution performs a fairer distribution when the number of
tasks is small [14]. More complex schemes with load balancing
can be applied if there is information about the actual load of
each task and worker.

IV. UNIFORM MODEL FOR SKELETON IMPLEMENTATION

In this section we present our proposed model to represent
algorithm skeletons. The model is based on Petri nets [6],
[5], a mathematical modeling language for the description of
systems. A Petri net is a particular kind of directed bipartite
graph, whose nodes represent transitions. We will add new

CollaborationSuccession

p1 p2 p3

p1

p2

p3

Fig. 1. Representation of the composition operators.

concepts to the original Petri nets definition to describe the
tasks involved in the computational patterns of skeletons.

The top level element of the model is an Application. It
corresponds to a Petri net, and it is defined as a 3-tuple, A =
(C,P, F) where:

• C = {c1, c2, . . . , cn} is a finite set of Task Containers.
This is one of the partitions of the bipartite graph.
The task containers correspond to the Petri net places,
although task containers are typed and store tasks
instead of tokens. The task type has to agree with
the container type.

• P = {p1, p2, . . . , pm} is a finite set of Processes. They
are the equivalent to the Petri net transitions. This
set of process is the other partition of the bipartite
graph. A process executes a function with state, they
are defined by the user to implement the particular
skeleton application. The function has r inputs and s
outputs: fi : x1, x2, . . . , xr → y1, y2, . . . , ys

• The last element of the application F ⊆ (P × T) ∪
(T × P), is a set of Flow Relationships (Petri arcs)
between task containers and processes, and vice versa,
defining the edges of the bipartite graph.

Based upon the arcs, we can define the input containers. A
container is called an Input Container for a process if there is
an arc from it to the process. Output Containers can be defined
analogously.

An application net can be nested inside a process node.
Transient and persistent nesting modes can be represented with
this model. In transient nesting, a process will execute another
Application as part of the function, while in persistent mode a
process can be replaced by another net, keeping its inputs and
outputs.

A. Composition operators

We define two operators that help to define the structure of
the application: succession and collaboration. The succession
operator links several processes one after the other using
containers and creating the flow relationships between them.
The collaboration operator creates a different structure where
the processes share the input and output containers. Fig. 1
shows the representation of the composition operators.

B. Execution semantics

Once created, the structure of an application is fixed,
although its state (the distribution of tasks in the containers)
can change. The behavior of the application is described in

Pipeline

p2 e

i1

i2

p1

i2-5

s2-5

e2-5

12 6 52-5

1D Stencil

Farm

i e

w1

w2

w3

Map-Reduce

m1

m2

m3

r1

r2

0 1 2 3 4 5 6 7

Fig. 2. Common skeletons using the model. A circle represents a container
and a rectangle indicates a process.

term of those states. The tasks in the containers are consumed/-
generated by the processes based on the following rules:

• At the initial state, the containers are empty.

• When a process is executed, it consumes tasks from
each of its input containers. There have to be at least
one task at each of them.

• The retrieved tasks are fed to the process function.
The result tasks are sent to the output containers. The
process function may do not produce tasks for all the
output containers.

• The evolution of the application is not deterministic.
When more than one process could be executed, we
can not tell which one will be executed first.

• The execution finishes when all tasks have been pro-
cessed.

C. Representing skeletons with this model

We discuss in this section how the algorithm skeletons
can be represented using processes and containers. We have
selected one representative example from each group defined
in the taxonomy of secction III. Fig. 2 shows the structure
for each example. The figure uses the standard Petri net
representation, where a circle indicates a container, a process
is shown as a rectangle, and the flow relationships are arrows
from/to elements.

e) Pipeline: A Pipe skeleton is composed of a set of
connected stages. The output of one stage is the input of the
following one. The structure of this skeletons is just a set
of processes (one for each stage) that exchanges tasks using
containers. As shown in Fig. 2, a process can receive tasks
from several stages using different containers, leading to a
more complex pipeline structure. In the same way, a process
can feed tasks to more than one output container.

f) Farm: A Farm skeleton, also known as master-
slave/worker, consists of a farmer and several workers. The
farmer receives a sequence of independent tasks and schedules
them across the workers. In a farm skeleton structure, the
farmer and the workers are independent processes. There exist
two tasks containers. The first one is shared by all the workers
and it keeps the tasks that are scheduled to them. The other one
is used to store the output results. In some farm configurations,
the workers can add more tasks to the input container.

g) Stencil: Although the model is more useful to rep-
resent dynamic structure skeletons, it can also represent static
ones. A Stencil skeleton updates the value of each element
of a data structure applying an operation with the values of
their neighbor elements. Fig. 2 shows an example of an 1D
stencil. The structure to represent this skeleton has a container
for its local elements and containers for the values of the
neighbors. Each process updates its local part and inserts the
values needed by its neighbors in the appropriate containers.

h) Map-Reduce: This is a distributed programming
model used by Google for efficient large-scale computa-
tions [11]. The model proposes two steps: map and reduce.
The computation in the map step takes a set of input key/value
pairs and processes them in parallel. The result for each pair is
another set of intermediate output key/value pairs. The reduce
step merges together all the intermediate pair associated with
the same key, returning a smaller set of output key/value pairs.
A Map-Reduce structure has a pair of process sets, one with
the processes performing the map operation and the other
performing the reduction. They are connected by several task
containers that hold the intermediate key/value pairs.

V. THE HITMAP LIBRARY

Before describing the implementation of this model in
Hitmap, we will briefly show the main features of the Hitmap
library.

Hitmap [16] is a library for hierarchical tiling and mapping,
with support for dense and sparse data structures [17]. It
is based on a distributed SPMD programming model, using
abstractions to declare data structures with a global view,
automatizing the partition, mapping, and communication of
hierarchies of tiles, while still delivering good performance.

Hitmap was designed with an object-oriented approach,
although it is implemented in C language. The classes are
implemented as C structures with associated functions.

Hitmap abstractions allow to represent different data do-
mains with a single interface. This interface has currently
implementations for dense arrays, subspaces of array indexes
with regular jumps, and sparse domains, such as Compressed
Sparse Row (CSR) or Bitmaps. Hitmap also has functionalities
to modify the domains, make selections, allocate memory for
an index subspace, or make efficient data copies.

Hitmap has a runtime plug-in system to distribute the
data domains. Plug-ins with different partition methods can
be selected. They divide the domains according to the actual
processors arranged in a virtual topology. Hitmap has differ-
ent partitioning and load-balancing techniques implemented.
Moreover, programmers may include their own new tech-
niques. It also allows to define communication patterns in

HitWorker

Input

buffers

Output

buffers

Task list function

Work stealing

mechanism

Farm model

Farm implementation

Fig. 3. Implementation of the HitWorker class, and an example of the farm
skeleton.

terms of the mapping results and neighbor relationships, that
automatically adapt the data distribution and communication
scheme at execution time.

The library is built on top of the MPI communication
library, for portability across different architectures. Hitmap
internally exploits several MPI techniques that increase per-
formance, such as MPI derived data-types and asynchronous
communications. The Hitmap library is publicly available [18].

VI. SKELETON MODEL IMPLEMENTATION USING HITMAP

This section explains how we have extended the Hitmap
library to implement the proposed model.

This extension constitutes another step in the development
of Hitmap. The library has functionalities to deal with static
computation structures, being able to partition different kinds
of data structures at initialization time. This proposal adds
support for load balancing, and dynamic distribution of tasks.

i) Implementation of the model elements: The current
implementation of the model adds two new classes to the
architecture: a HitTask, and a HitWorker. A HitTask class, an
abstract datatype, is used to encapsulate the data that flows
between application stages. This HitTask class has a weight
attribute that is used in load-balancing decisions. A HitWorker
is a generic worker that runs over a process, executing a user
function.

The containers of the model are implemented as lists of
tasks inside the workers. When a worker generates a task for
another process, the task is sent using MPI communications,
and it is inserted in the worker task list. If several processes
share an input container, for example in a farm structure, it
is implemented as a distributed list. Each worker has a local
list and the tasks are communicated using a work stealing
mechanism to balance the load.

The arcs of the bipartite graph are task channels between
workers, creating successor-predecessor relations. This allows
them to be arbitrarily nested. Fig. 3 shows the internal details
of an example HitWorker object with two input and three
output channels. It also shows how several workers can be
linked to implement a farm skeleton structure defined using
the model.

j) Worker operations: There are several operations that
can be processed at the same time in a worker: Tasks recep-
tion, task sending, function execution, and work stealing. To
minimize the impact between operations, the worker has been
implemented using several threads that handle these operations
independently. A worker works in the following way:

• There is a thread that waits to receive tasks from any
of its predecessors, inserting them in the local list.

• Another thread executes the user function. This func-
tion processes the available tasks in the list. The
execution of the function can: (1) generate new tasks
for the local list, (2) generate new tasks for the
successors, or (3) produce no output.

• If the list is a distributed one, a work-staling mech-
anism runs in the background. When the local list is
going to be emptied, it tries to get tasks from the other
workers that share the virtual container.

A. Optimization details

This section describes the most relevant optimization de-
tails of the implementation described above. Using MPI to
communicate a single task is not efficient in a generic case,
due to the time and memory overhead of the communication
operations. To avoid this, we have implemented input and
output tasks buffers that group tasks before communication.
The granularity of the buffers can be modified in terms of task
weights. These buffers use asynchronous blocking MPI calls
managed by different threads. In this way, communication op-
erations can overlap. In addition, MPI Communicators are used
to isolate message contexts for the work-stealing mechanism,
also allowing skeleton nesting.

Special care has been taken to design the worker’s in-
ternal list of tasks. The different threads of the worker can
modify this list, so mutual exclusion should be ensured to
avoid inconsistent states. Moreover, the task in the list can
be originated from different sources: predecessors workers,
work stealing exchanges, and locally generated tasks. The user
function extracts and inserts tasks using one end of the list
while the input buffers and worker stealing mechanism use
the other one. This improves task locality for the applications
that can exploit it.

Our tool allows to change different parameters in order to
test which configurations are better for a given program. We
can change the list and buffers sizes, change the task grouping
policy, or disable the work-stealing mechanism.

To allow explicit, as well as implicit interaction modes,
the required user function is executed once. This allows to
declare and free internal data structures to keep state, wrapping
the task management loop. The implementation offers to the
programmer of the function an API of methods to retrieve tasks
from the list, access the data of the tasks, create new tasks, or
send tasks to the output buffers. The input and output are not
limited to the one to one relation of the implicit interaction
mode. The programmer is free to combine the functions of
this API to created any skeleton stage.

Support for both transient and persistent nesting modes has
been considered. Persistent mode is achieved just by linking

workers. The transient mode poses a bigger challenge, it im-
plies that sub-skeletons could be created during the execution
of the upper one. This is solved with a pile of execution
contexts.

B. Implementation examples

This section exemplifies how to create skeletons with our
implementation of the model. Fig. 4 shows an example of a
pipeline. The function in line 5 creates a three stage pipeline.
It receives three function pointers as parameters, one for each
stage. These user functions must receive a HitWorker structure
as defined in the typedef of their prototype on line 2. The
pipe3 function creates three workers with the corresponding
user function and defines the number and types of the inputs
and outputs. Then, it combines the workers with the succession
operator to create the relationships. The result is another
worker that encapsulates the previous ones. We can use it to
execute the whole pipe with a single call in the main function
(line 19).

Creating a farm is a similar process but uses the collabo-
rator operator instead. More complex computation structures
can be created manually defining how the inputs and outputs
of the different workers are linked.

VII. EXPERIMENTAL RESULTS

Experimental work has been conducted to show that the
implementation developed achieves good performance with
different configurations, and compared with another skeleton
framework. We use two different experimental platforms with
different architectures: A multicore shared-memory machine
and a distributed cluster of commodity PCs. The shared-
memory system, Geopar, is an Intel S7000FC4URE server with
four quad-core Intel Xeon MPE7310 processors at 1.6GHz
and 32GB of RAM. The distributed system is a homogeneous
Beowulf cluster composed by 20 AMD Athlon 3000+ single-
core processors at 1.8GHz and 1Gb of RAM each. The cluster
is interconnected by a 100Mbit Ethernet network. The MPI
implementation used is MPICH2.

A. Mandelbrot set benchmark

We have chosen a simple benchmark with no complex
application interactions, to focus on the efficiency of the imple-
mentation. The selected benchmark calculates the Mandelbrot
set [19], one of the best-known examples of mathematical
visualization. It has become popular as a benchmark in parallel
computing since it is easily parallelizable but introduces a load-
balancing problem [1]. Several skeleton frameworks use it as
a case study [4], [12].

The Mandelbrot set is defined in the following way. Given
a complex number c ∈ C and the sequence zn+1 = zn +
c, starting with z0 = 0, c belongs to the Mandelbrot set if,
when applying the iteration repeatedly, the sequence remains
bounded regardless of how big n gets.

The benchmark computes the iterative equation for each
point to calculate whether the sequence tends to infinity. If
this sequence does not cross a given threshold before reaching
a given number of iterations, it is considered that the sequence
will converge. This problem is straightforwardly parallelizable

1 // Typedef for the user function pointer.
2 typedef void (*HitWorkerFunc) (HitWorker*);
3

4 // Three-stage pipeline
5 HitWorker pipe3(HitWorkerFunc f_ini, HitWorkerFunc f_mid, HitWorkerFunc f_end){
6 HitWorker pipe;
7 HitWorker * workers = malloc(3 * sizeof(HitWorker));
8

9 hit_workerCreate(&workers[0], f_ini, 0, 1, HIT_DOUBLE);
10 hit_workerCreate(&workers[1], f_mid, 1, 1, HIT_DOUBLE, HIT_DOUBLE);
11 hit_workerCreate(&workers[2], f_end, 1, 0, HIT_DOUBLE);
12

13 hit_workerOpSuccession(&pipe,3,&workers[0],&workers[1],&workers[2]);
14

15 return pipe;
16 }
17

18 // Main function
19 int main(int argc, char ** argv) {
20

21 hit_comInit(&argc,&argv);
22 HitWorker pipe = pipe3(init,process,end);
23 hit_workerExecute(&pipe);
24 hit_comFinalize();
25 }

Fig. 4. Fragment of code showing the creation of a pipe and a farm.

because the calculation of the equation on a particular point
is independent on the result from any other point. However, it
can present significant load imbalances, because some points
reach the threshold after only a few iterations, others could
take longer, and the points that belong to the set require the
maximum number of iterations.

B. Performance

To test the performance obtained by the implementation of
the model, we measure and compare the run-time of several
implementations of the Mandelbrot benchmark: (1) the Hitmap
implementation; (2) the Hitmap implementation with the work
stealing mechanism disabled, (3) a code using the Muesli
skeleton framework [9] forced to use only MPI processes, and
(4) the Muesli code forced to use OpenMP threads instead of
MPI processes.

The two plots in Fig. 5 show the results of the previously-
described implementations of the benchmark for both ar-
chitectures considered. The programs have been run with a
square matrix of 4 000 × 4 000 elements, a limit of 2 000
iterations, and task grain of 16 × 16 elements. Hitmap obtains
a good scalability in the shared-memory machine. In the
cluster, the results are not as good because the selected task
grain is not enough, and the communications drag down the
scalability. The difference of using work stealing in Hitmap is
not noticeable for this application. The Muesli implementations
do not scale as good as Hitmap. It is specially noticeable
in the Beowulf cluster. As expected, in the shared-memory
machine, the experiment with the Muesli code using only
OpenMP threads has slightly better performance than using
MPI processes. It is remarkable than Hitmap performs better
in both cases.

The plots in Fig. 6 show the performance of the Hitmap

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12 14

Sp
ee

du
p

Workers

Plot speedup (Geopar)

Hitmap noWS
Hitmap
Muesli

Muesli OMP

 0

 1

 2

 3

 4

 5

 6

 2 4 6 8 10 12 14 16 18 20

Sp
ee

du
p

Workers

Plot speedup (SC Beowulf Cluster)

Hitmap noWS
Hitmap
Muesli

Fig. 5. Speedup comparison for Hitmap, Hitmap without work stealing, and
Muesli implementations of the Mandelbrot benchmark.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 2 4 6 8 10 12 14 16

Ex
ec

ut
io

n
tim

e

Processors

Plot time (Geopar)

Grain 1
Grain 42

Grain 162

Grain 322

 0

 20

 40

 60

 80

 100

 120

 2 4 6 8 10 12 14 16 18 20

Ex
ec

ut
io

n
tim

e

Processors

Plot time (SC Beowulf Cluster)

Buffer 10
Buffer 200
Buffer 500
Buffer 1000

Fig. 6. Execution time comparison for different task grain sizes and
communication buffer sizes of the Hitmap implementation.

implementation with different task grain sizes and buffer sizes
using the same configuration as the previous experiments. The
results for the architectures not presented in the plots are
similar on both of them. The plot comparing the task grain
shows that extreme values (1 element and 32 × 32 elements
block) do not achieve good performance and scalability. A
granularity value which is appropriated for the target system
should be chosen. The last plot shows that the buffer size does
not have a clear impact on the performance for this application.

VIII. CONCLUSIONS

In this paper we present a simple model that can be used
to represent algorithm skeletons. We focus our solution on
dynamic-structure skeletons, the ones which impose dynamic
task-creation, load-balancing, or data-flow issues.

We discuss how to use the proposed model to represent
a set of well-known skeletons. We have also developed an
implementation of the model, integrating this skeleton support
into Hitmap, a library for efficient partition and communication
of dense and sparse data structures.

To illustrate the usage of the implementation, we have
implemented a simple task skeleton benchmark. We have used
it to compare our solution with the Muesli skeleton framework.
Our experimental results show that the implementation is
highly efficient and configurable.

Our ongoing work includes the creation and encapsulation
of more complex skeletons using this model to show its
applicability for production parallel applications.

ACKNOWLEDGMENTS

The authors would like to thank Prof. Murray Cole for
many fruitful discussions. This research is partly supported
by the Castilla-Leon Regional Government (VA172A12-2);
Ministerio de Industria, Spain (CENIT OCEANLIDER);
MICINN (Spain) and the European Union FEDER (Mogecopp
project TIN2011-25639, CAPAP-H3 network TIN2010-12011-
E, CAPAP-H4 network TIN2011-15734-E); and the HPC-
EUROPA2 project (project number: 228398) with the support
of the European Commission - Capacities Area - Research
Infrastructures Initiative.

REFERENCES

[1] W. Gropp, E. Lusk, and A. Skjellum, Using MPI : Portable Parallel
Programming With the Message-passing Interface. MIT Press, 1999.

[2] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and
R. Menon, Parallel programming in OpenMP, 1st ed. Morgan
Kaufmann, 2001.

[3] M. Cole, Algorithmic Skeletons: Structured Management of Parallel
Computation. MIT Press, 1989.

[4] ——, “Bringing skeletons out of the closet: a pragmatic manifesto for
skeletal parallel programming,” Parallel Computing, vol. 30, no. 3, pp.
389–406, Mar. 2004.

[5] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[6] W. M. P. van der Aalst and K. van Hee, Workflow Management: Models,
Methods, and Systems. The MIT Press, 2002.

[7] H. González-Vélez and M. Leyton, “A survey of algorithmic skeleton
frameworks: high-level structured parallel programming enablers,” Soft-
ware: Practice and Experience, vol. 40, no. 12, pp. 1135–1160, 2010.

[8] A. Benoit, M. Cole, S. Gilmore, and J. Hillston, “Flexible skeletal
programming with eSkel,” in Proceedings of the 11th international
Euro-Par conference on Parallel Processing, Lisbon, Portugal, 2005,
pp. 761–770.

[9] P. Ciechanowicz, M. Poldner, and H. Kuchen, “The Münster Skeleton
Library Muesli – A Comprehensive Overview,” Westfälsche Wilhelms-
Universität Münster (WWU) - European Research Center for Informa-
tion Systems (ERCIS), Tech. Rep. 7, 2009.

[10] J. Reinders, Intel® threading building blocks: Outfitting C++ for Multi-
Core Processor Parallelism, 1st ed. O’Reilly Media, 2007.

[11] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” in Proceedings of the 6th conference on Symposium on
Opearting Systems Design & Implementation (OSDI’04). USENIX
Association, 2004.

[12] M. Steuwer, P. Kegel, and S. Gorlatch, “SkelCL – A Portable Skeleton
Library for High-Level GPU Programming,” in Proc. 2011 IEEE Inter-
national Symposium on Parallel and Distributed Processing Workshops
and Phd Forum (IPDPSW), 2011, pp. 1176–1182.

[13] A. Benoit and M. Cole, “Two Fundamental Concepts in Skeletal Parallel
Programming,” in The International Conference on Computational
Science (ICCS), 2005, pp. 764–771.

[14] M. Poldner and H. Kuchen, “On Implementing the Farm Skeleton,”
Parallel Processing Letters, vol. 18, no. 1, pp. 117–131, 2008.

[15] ——, “Algorithmic Skeletons for Branch and Bound,” Software and
Data Technologies, pp. 204–219, 2008.

[16] A. Gonzalez-Escribano, Y. Torres, J. Fresno, and D. R. Llanos, “An
extensible system for multilevel automatic data partition and mapping,”
IEEE Transactions on Parallel and Distributed Systems, 2013, to appear.

[17] J. Fresno, A. Gonzalez-Escribano, and D. R. Llanos, “Extending a
hierarchical tiling arrays library to support sparse data partitioning,”
The Journal of Supercomputing, vol. 64, no. 1, pp. 59–68, Apr. 2013.

[18] Trasgo Group, “Hitmap Repository,” 2013,
http://trasgo.dcs.fi.uva.es/hitmap.

[19] B. B. Mandelbrot, “Fractal aspects of the iteration of z 7→ λz(1− z),”
Annals of the New York Academy of Sciences, vol. 357, pp. 249–259,
1980.

