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Abstract—Dealing with both dense and sparse data in parallel environments usually leads to two different approaches: To rely on a
monolithic, hard-to-modify parallel library, or to code all data management details by hand. In this paper we propose a third approach,
that delivers good performance while the underlying library structure remains modular and extensible. Our solution integrates dense
and sparse data management using a common interface, that also decouples data representation, partitioning, and layout from the
algorithmic and parallel strategy decisions of the programmer. Our experimental results in different parallel environments show that this
new approach combines the flexibility obtained when the programmer handles all the details with a performance comparable to the use
of a state-of-the-art, sparse matrix parallel library.
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1 INTRODUCTION

Data structures with sparse domains arise in many real
problems within the scientific and engineering fields. For
example, they appear in PDE solvers as sparse matrices,
or they are used to model complex element relationships
as sparse graphs. However, not many parallel program-
ming frameworks integrates transparently support for
both dense and sparse data structures. Most parallel
programing languages, such as HPF [1] or UPC [2], only
have a native support for dense arrays, including prim-
itives and tools to deal with data locality and/or dis-
tribution only for dense data structures. Coding sparse-
oriented applications with these languages implies man-
ually managing the sparse data with an expensive pro-
gramming effort, or using domain specific libraries that
do not follow the same conceptual approach. In both
cases, the reusability of code developed previously for
dense data structures is very poor.

In this paper we present a complete solution to handle
sparse and dense data domains using the same con-
ceptual approach. The reason is that the design of a
parallel algorithm follows the same basics regardless the
underlying data structure; the differences appear at the
implementation stage, when specific methods for data
partition and distribution should be selected. Thus, the
implementation of those algorithms could be simplified
using high-level parallel models with abstractions for the
data distribution management. Providing the appropri-
ate abstractions to the data storage, partition, layout, and
communication structure building, it is possible to reuse
the same parallel code independently of the domain
representation and the particular partition technique
selected.
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To validate our solution, we have integrated sparse
and dense support within a single communication and
tiling library, using the same interface for both of them.
The library currently supports dense and sparse matrices
and graphs, and can be easily extended to support
other structures as well. With our solution, it is possible
to build parallel programs in terms of an explicit yet
abstract synchronization and communication structure,
that automatically adapts to efficiently use both dense
and sparse data domains.

Our implementation is built upon the Hitmap li-
brary [3], initially designed to manage dense data struc-
tures. Hitmap performs highly-efficient data distribu-
tions and aggregated communications, expressed in an
abstract form. The new version integrates dense and
sparse data structures for matrices and graphs using a
common interface, taking advantage of the automatic
data distribution and communication functionalities pro-
vided by Hitmap. We use abstractions to properly encap-
sulate the management of domains, data arrays, partition
techniques, and communication building, in terms of
locality and neighborhood properties.

To show the application of this approach, we use
two different benchmarks: A simple sparse matrix and
vector product, and a real FEM method that uses a
state-of-the-art graph partitioning technique. For these
codes we have developed three versions: A manual C-
MPI implementation; a Hitmap-based implementation;
and a version that uses the PETSc parallel library. Our
experimental results for both shared- and distributed-
memory environments show that the use of our solution
greatly reduces the associated programming effort while
keeping a performance comparable to the other versions.

The paper is organized as follows: Section 2 briefly de-
scribes some related work in the field. Section 3 discusses
our approach to conceptually integrate dense and sparse
domains in a single parallel programming methodology.
Section 4 provides an overview of the original Hitmap
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library. Section 6 explains the design of our proposal
to integrate dense and sparse support in Hitmap. Sec-
tion 7 discusses the design and implementation of a
multiplication benchmark and a real FEM application
to show how the new Hitmap programming approach
works. Section 8 presents experimental work related to
the applications. Finally, Section 9 concludes the paper.

2 RELATED WORK
There are many tools designed to partition sparse do-
mains, such as Metis [4], Scotch [5], or Party [6]. These
tools can be used in the context of traditional program-
ming models like MPI [7] or OpenMP [8]. However,
these models require the programmer to manually code
many run-time decisions based on data partition results,
adapting synchronization and/or communication to the
variable sizes and inter-dependencies generated.

Regarding specific parallel libraries for sparse do-
mains, such as OSKI [9] or PETSc [10], they provide
frameworks with extremely efficient kernels and solvers
for a great variety of linear algebra problems. The paral-
lel strategies of these solvers have been defined specif-
ically and they are hard-coded inside the tools of each
particular framework. Therefore, a deep understanding
of the framework internals is needed to change them,
either to add new parallel algorithms or strategies, or to
optimize them for new architectures.

PETSc and Hitmap also shows several differences.
First, PETSc offers only one partitioning scheme where
rows are distributed among processors [10]. On the
contrary, Hitmap can be extended by the user with new
partition methods. For example, we currently support
techniques such as multidimensional block or cyclic
partitions, and in this paper we show how a specific
graph bisection partition can be added as a new plugin.
Second, PETSc is designed to solve scientific applications
modeled by partial differential equations. The data struc-
tures supported are vectors and matrices of basic scalar
data types, implemented in opaque structures that are
managed by provided internal solver implementations.
Instead, Hitmap is an all-purpose library that allows to
program generic applications with any kind of struc-
tured or dynamic data types, allowing the user to access
the elements directly. This allows to implement other
applications, such as lexicographic sorting of strings,
local DNA sequence alignment, etc., without modifying
the library. In [3] we show examples of how Hitmap also
supports hierarchical dynamic decompositions of virtual
topologies and data structures to easily implement algo-
rithms such as Quicksort, or some N/body interaction
algorithms. Third, Hitmap integrates in a single API the
partition and distribution of sparse matrices and graphs.
PETSc does not currently provide tools that completely
manage the migration and node renumbering, since it
will be dependent on the particular data structure type
needed for the application [10].

There are few proposals that use a unique repre-
sentation for different kinds of domains. Chapel [11],
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Fig. 1. Initialization stages of parallel computations for
different data structures.

a PGAS language, proposes the same abstraction to
support distributed domains for dense and sparse data
aggregates. As long as the programming approach of
PGAS languages hides the communication issues to the
programmer, efficient aggregated communications can
not be directly expressed, and most of the times cannot
be automatically derived from generic codes. Specific
optional interfaces should be defined for different data
structures and mapping techniques to achieve good effi-
ciency. Chapel also still lacks an appropriate support for
graph structures and graph-partitioning techniques.

The original Hitmap library share some concepts with
HTAs (Hierarchically Tiled Arrays) [12], a library that
supports dense hierarchical tiles that can be distributed
across processes in distributed- or shared-memory ar-
chitectures. HTAs lacks support for sparse domains. It
presents a limited set of regular partitioning and map-
ping functionalities, and communications are dependent
on them.

3 CONCEPTUAL APPROACH

In this section we discuss how a common interface
for sparse and dense data management, combined with
abstractions to encapsulate the partition, layout, and
communication techniques lead to an unique parallel
programing methodology.

Regardless the dense or sparse nature of the data, most
parallel programs follow the same strategy, with well-
known stages. Fig. 1 shows these stages for different
data domains. As can be seen, the stages are conceptually
independent of the data domain, the partition technique,
and the specific algorithm applied to the data.

We will use several abstract mathematical entities to
describe the stages involved in most parallel programs.
In the following sections, we describe how these entities
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are implemented in the Hitmap library and how they
can be used.

Domain definition The first stage is to define the data
domain. We define a domain D as a collection of n-tuples
of integer numbers that define a space of n-dimensional
indexes. For dense arrays, the index domain is a sub-
space of Zn, defined by a rectangular parallelotope. For
sparse data structures it is just a subset of Zn.

Domain partition The next stage is the domain
partition. It consists in dividing a whole data domain
into smaller portions, assigning them to different pro-
cessors. The processors are arranged using a virtual
topology of processors V . The virtual topology defines the
neighborhood relationships. There are many algorithms
and methods to perform a partition. The result of the
partition is a set of domain subspaces containing the
local elements for each processor. The particular partition
method can be calculated using a Layout function L,
which maps the domains subspaces to the processors
in a virtual topology L(D,V ) : D → V .

Memory allocation Once the domain has been
partitioned, each processor has to allocate memory for
the elements of its local subspace. We define a Tile T as
an object that associates data elements to index elements
of a domain D. Matrix tiles associate one data element
to each domain element. Respectively, Graph tiles are
defined for 2-dimensional domains. In this case, each
domain element (i, j) ∈ D indicates the existence of a
graph edge. A Graph tile associates one data element
to each domain element (edge values), and one data
element to each single index i : (i, j) ∈ D ∨ (j, i) ∈ D
(node values). The processors need memory to keep the
values of their local elements. They may also allocate
additional memory for elements mapped to other proces-
sors that are needed to complete the local computation.
Tiles can be created and allocated using the local part of
the domain assigned by the layout function. Note that
buffers for neighbor data can be automatically derived.

Communication They can be defined as abstract
objects in terms of neighborhood relationships and over-
lappings of local and neighbor tile domains.

Local computation After these four preliminary
stages, local computations are carried out using iterators
to retrieve the data from the tiles.

To sum up, the presented model focus on two as-
pects: Abstract data management, and explicit commu-
nications. The domain definition, data allocation, and
layout are encapsulated using abstractions. Thus, they
are independent of the used data type, dense or sparse.
The previous abstractions for data management allow to
define abstract explicit communications.

4 THE ORIGINAL HITMAP LIBRARY

Hitmap [3], [13] is a library for hierarchical tiling and
mapping of dense arrays. It is based on a distributed
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Fig. 2. Hitmap library architecture. Black boxes represent
the new classes introduced to integrate dense and sparse
data support. Gray boxes represents classes that had to
be redesigned to deal with the new abstractions.

SPMD programming model, using abstractions to de-
clare data structures with a global view, and automatizes
the partition, mapping, and communication of hierar-
chies of tiles, while still delivering good performance.

4.1 Hitmap architecture
Before introducing our new abstractions for sparse data
structures, this section describes the architecture of the
original Hitmap library. Hitmap was designed with an
object-oriented approach, although it is implemented in
C language. The classes are implemented as C structures
with associated functions. Fig. 2 shows a diagram of
the library architecture, where the white and gray boxes
represent the original Hitmap classes. A summary of
the basic Hitmap library API is included in the on-line,
supplementary material.

In the previous Hitmap release, there was only sup-
port for dense domains, represented by a single Shape
class. A shape represented a subspace of array indexes
defined as an n-dimensional rectangular parallelotope.
Its limits were determined by n Signature objects. Each
Signature is a tuple of three integer numbers S = (b, e, s)
(begin, end, and stride), representing the indexes in one
of the axis of the domain. Signatures with s 6= 1 define
non-contiguous yet regular spaced indexes on an axis.
The index cardinality of a signature is |S| = d(e− b)/se.
Begin and stride members of a Signature represent the
coefficients of a linear function fS(x) = sx+ b. Applying
the inverse linear function f−1

S (x) to the indexes of
a Signature domain we obtain a compact, contiguous
domain starting at ~0. Thus, the index domain represented
by a Shape is equivalent (applying the inverse linear
functions defined by its signatures) to the index domain
of a traditional array.

A Tile maps actual data elements to the index subspace
defined by a shape. New allocated tiles internally use a
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Fig. 3. Hitmap programming methodology. The gray box
represent a new decision phase introduced in this paper.

contiguous block of memory to store data. Subsequent
hierarchical subselections of a tile reference data of the
ancestor tile, using the signature information to locate
and access data efficiently. Tile subselections may be also
allocated to have their own memory space.

The Topology and Layout abstract classes are interfaces
for two different plug-in systems. These plug-ins are
selected by name in the invocation of the constructor
method. Programmers may include their own new tech-
niques. Topology plug-ins implement simple function-
alities to arrange physical processors in virtual topolo-
gies. Layout plug-ins implement methods to distribute
a shape across the processors of a virtual topology.
Hitmap has different partitioning and load-balancing
techniques implemented as layout plug-ins. They encap-
sulate details which are usually hardwired in the code
by the programmer, improving reusability. The resulting
Layout object contains information about the local part
of the domain, neighborhood relationships, and methods
to locate the other subdomains.

Finally, the Communication class represents informa-
tion to synchronize or communicate tiles among proces-
sors. The class provides multiple constructor methods
to build different communication schemes, in terms of
tile domains, layout objects information, and neighbor
rules if needed. This class encapsulates point-to-point
communications, paired exchanges for neighbors, shifts
along a virtual topology axis, classical collective com-
munications, etc. The library is built on top of the
MPI communication library, for portability across dif-
ferent architectures. Hitmap internally exploits several
MPI techniques that increase performance, such as MPI
derived data-types and asynchronous communications.
Communication objects can be composed in reusable
Patterns to perform several related communications with
a single call.

5 HITMAP USAGE METHODOLOGY

In this section, we discuss how a typical parallel program
is developed using Hitmap. Hitmap proposes a pro-
gramming methodology that follows a waterfall model
with the phases shown in Fig. 3. Decisions taken at any
phase only affect subsequent phase.

5.1 Design of a parallel program using Hitmap
The programmer designs the parallel code in terms of
logical processes, using local parts of abstract data struc-
tures, and interchanging information across a virtual
topology of unknown size. The first step is to select
the virtual topology type appropriate for the particular
parallel algorithm. For example, it could be a rectangu-
lar topology where processors have two indexes (x, y).
Topologies define neighborhood relationships.

The second design step is to define domains, start-
ing with a global view approach. All logical processes
declare the shapes of the whole data structures used by
the global computation. The programmer chooses where
to activate the partition and mapping procedure for each
domain. At this phase, the only information needed is
the domain to be mapped. There is no need to specify the
partitioning technique to be used. Local domains may
be expanded to overlap other processors subdomains,
generating ghost zones, a portion of the subspace shared
(but not synchronized) with another virtual processor.
Once mapped, and after the corresponding memory
allocation, the programmer can start to use data in the
local subdomain.

The programmer finally decides which communica-
tion structures are needed to synchronize data between
the computational phases. They are imposed by the par-
allel algorithm. At this phase the programmer reasons
in terms of tile domains and domains intersections.

5.2 Implementation of a parallel program using
Hitmap
Hitmap provides functionalities to directly translate the
design to an implementation which is independent of the
underlying physical topology, and the partition/layout
techniques. Hitmap provides several topology plug-ins.
Each plug-in automatically arranges the physical proces-
sors using its own rules to build neighborhood relation-
ships. New topology plug-ins with different rules can
be developed and reused for other programs. Topology
plug-ins may flag some processors as inactive transpar-
ently to the programmer. For example, when there are
more processors than gaps in the virtual topology.

Global domains are declared with Shape objects. Lay-
out objects are instantiated for partitioning and mapping
global domains across the virtual topology. The layout
objects are queried to obtain the local subdomain shapes.
After expanding or manipulating them if needed, the
local tiles can be dynamically allocated. Once allocated,
data in the local tiles may be accessed using local tile
coordinates, or in terms of the original, global view
coordinates. This helps to implement the sequential com-
putations for the tiles.

Communication objects are built to create the commu-
nication structures designed. They are instantiated using
a local tile (to locate the data in memory) and using infor-
mation contained in a layout object about neighbors and
domain partition. For example, for ghost zones, shape
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intersection functionalities automatically determine the
exact chunks of data that should be synchronized across
processors. The communication objects contain data-
marshalling information. They can be created at program
initialization, and invoked when they are needed, as
many times as required.

The result of the implementation phase is an generic
code that is adapted at run-time depending on: (a) the
particular global domains declared; (b) the internal infor-
mation about the physical topology; and (c) the selected
partition/layout plug-ins. Note that it is possible to
change the partition name technique without affecting
the rest of the code.

6 ADDING SUPPORT FOR SPARSE DOMAINS
TO HITMAP

In this section we discuss simple abstractions to use
the same methodology to manipulate dense and sparse
data structures. We analyse the conceptual and design
changes required in the Hitmap architecture to integrate
sparse domains and their deeply different partition tech-
niques. Decoupling shapes and tiles from partition tech-
niques and derived communications allows, for example,
to extend the library with new data-structure classes
without the need of reimplementing existing codes that
carry out the computation.

The gray box in Fig. 3 represents the new decision
phase that we have added to the Hitmap programming
approach. The new classes and methods of the Hitmap
API to support the sparse domains are summarized in
the on-line, supplementary material.

The original Hitmap library exploited the idea of
separating the array index domain (in the Shape class),
from the data allocation (in the Tile class). The original
Tile class contained the methods to associate each multi-
dimensional index with one data element, using linear
functions defined by the Signature objects in the shape.
We extend this idea, transforming the Shape and Tile
classes in abstract interfaces that can be implemented in
different ways.

6.1 Shapes
The original Shape class is substituted by an abstract
interface. The new Shape interface defines methods to
create multi-dimensional index domains, add new ele-
ments to the domain, check if an element is inside the
domain, etc. The old Shape class, based on Signatures,
is transformed in a different class which implements the
new Shape interface.

Sparse domains can be implemented in different ways,
most of them related to traditional sparse matrices for-
mats (COO, CSR, LIL, etc.) As long as the methods to
retrieve or locate data are not in the Shape interface,
some formats lead to the same Shape implementation.
The differences will be found in the data-localization
functions in the Tile. The old Signature Shape imple-
mentation is very efficient to locate dense information,

but does not directly support a proper representation for
dynamically adding or eliminating particular indexes. To
solve this problem, we propose new implementations
of the Shape class that are efficient enough to locate
and traverse highly dense structures, but also allows to
represent particular holes in the index domain.

We have included classes for two new kinds of
sparse domains. As an example of traditional sparse
domain representations, we have selected the Com-
pressed Sparse Row (CSR) format. It is a simple and
general format for sparse arrays, with minimal storage
requirements [14]. The new CSRShape class encapsulates
2-dimensional, sparse-matrix domains using the CSR
format. It uses two compact arrays to contain the list
of existing index elements. The memory space required
by this representation is in the order of the number of
existing domain elements (or non-zero elements in a
sparse matrix).

As a second example of sparse domain implemen-
tation, the BitmapShape class uses a bitmap structure
to represent the existing and non-existing indexes of a
rectangular parallelotope. While Signature shapes only
need a memory space in the order of the number of
dimensions, the memory space required by the Bitmap
representation is in the order of the parallelotope size,
independently of the density of the domain. Although
bitmap iterators are less efficient than CSR’s, bitmap
shapes are more efficient than CSR shapes in terms of
memory footprint. A more complete comparison can be
found in Section 3 of the supplementary material.

Comparing bitmap shapes with Signature shapes,
bitmap structure is almost as efficient as the Signature
shape to retrieve data by coordinates. There is a small
performance penalty due to the extra arithmetic opera-
tions involved in the bitmap check before accessing the
data.

The original Shape class included functionalities to
expand a shape to generate ghost borders, useful in
programs with neighbor data synchronization (such as
cellular-automata programs). The same functionalities
should be defined for sparse domains. The neighborhood
property in sparse domains is conceptually different
than the one defined for dense domains. We define the
neighborhood relationship for sparse domains in terms
of graph connectivity. Domain elements are neighbors if
one of their index coordinates is the same. Thus, building
an expanded shape implies to traverse the local shape
once. The result is another shape that can be used along
with the layout object to compute intersections with
neighbor subdomains, automatically determining an ef-
ficient marshalling scheme for communications. These
functionalities allow to program neighbor synchroniza-
tion codes with graph partitioning, in the same way than
for dense matrices.

6.2 Tiles
The old Tile class is transformed into an implemen-
tation of a new Tile interface. This interface defines
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abstract methods to efficiently allocate and retrieve data.
In general, the implementations should keep the data
in a single block of contiguous memory, using index
transformations and other ancillary structures to locate
them in memory. This also help to implement efficient
functionalities to traverse and communicate tiles. It is
possible to create different Tile implementations for the
same kind of Shape.

The original version of the Hitmap library was ori-
ented to manage arrays, with only one data element
associated to each domain index. The new abstraction
also allows to create implementations with more than
one data space for the same domain. For example,
graphs have a single, N ×N square index space. Edges
information and vertices values can be stored in differ-
ent, internal data structures (matrix and vectors, respec-
tively), with different access methods. It is easy to create
different Tile implementations for matrices, graphs, or
other data structures, based on the same Shape imple-
mentation (see Fig. 2).

We have developed new Tile implementations for ma-
trices and graphs, with both dense and sparse domains.
As it is shown in Fig. 4, the different Tile implemen-
tations reference a Shape that defines the domain, and
contains one or more pointers to the data sets stored in
contiguous memory blocks.

The implementation of the new tile methods to locate
data are dependent on the kind of Shape implementa-
tion. The mapping functions to be implemented on the
tiles are directly derived from the CSR format definition.
In CSR, as in some other sparse data representations,
retrieving data elements using their indexes is not as
efficient as with Signatures. On the other hand, the
iterator methods that traverse the data structure in the
proper order, are equally efficient for these dense and
sparse representations. Thus, the Tile iterators are the
methods of choice to traverse data in Hitmap, in order
to keep better portability when changing from dense
to sparse data structures. A description of the Hitmap
sparse iterator can be found in the supplementary ma-
terial.

6.3 Layout

In Hitmap, the Layout constructor is a wrapper to call
the selected plug-in with an input Shape and a Topology.
The plug-in fills-up the fields of the resulting layout ob-
ject, returning local and/or neighbors subdomain infor-
mation. The Shape class hides the details about how the
domain is defined. Nevertheless, each plug-in contains
a partition technique which may be appropriate only for
a specific kind of domain. For example, regular blocking
techniques for signatures are not appropriate for sparse
domains, and bisection graph partition techniques are
not efficient for dense domains. The Layout class does
not need relevant changes, but existing layout plug-ins
need to be redefined to reject non-appropriate kinds of
shape, or be generalized to deal with different kinds of

shapes. Internally, the plug-in may select the exact parti-
tion technique depending on the Shape implementation
(see Fig. 3).

As an example of partition/mapping techniques ap-
propriate for sparse domains, we have integrated one
of the techniques found in Metis [4] into a new plug-
in. Metis is a state-of-the-art graph partitioning library
based on bisection methods. Our plug-in translates the
information retrieved from the Shape object to the exact
array format expected by the Metis function. After this
translation step, the plug-in calls Metis, providing it also
with the number of virtual processes. Finally, the plug-in
uses the results to build the local Shape, and save details
to compute neighbor information when requested.

6.4 Communication

There is no change in the methods definition of the Com-
munication class. However, the original Communication
class contained a private method that used the Signature
Shape of the tile to generate an MPI derived data type.
This type represented the data location in memory, let-
ting the MPI layer to automatically marshall/unmarshall
the data when the communication were invoked. To gen-
eralize the Communication class for different kinds of
shapes, the marshalling functionalities has been moved
to the Tile interface and Tile implementations, and they
are called from the Communication class when needed.

The new version of the Communication object sup-
ports two new global communication types to deal with
Graph information. The first one exchanges neighbor
vertices information with other virtual processes, and the
second one scatters the data of a whole graph-tile that
is stored in one processor. This helps to read graph data
from a file in one processor and distribute it across the
topology. Other utilities have been added to the library
for reading and writing sparse data tiles in different
formats, like the Harwell-Boeing format [15], or plain
CSR format.

7 BENCHMARKS

In this section we describe two benchmarks developed
to evaluate the dense and sparse data integration in the
Hitmap library. The first one is a simple sparse matrix
and vector multiplication, a benchmark that allow us to
compare Hitmap with efficient implementations using
well-known tools like PETSc. The second benchmark,
which is more complex, calculates the equilibrium po-
sition of a 3-dimensional spring system, represented as
a graph. It represents a real application and exploits
sparse domain functionalities at all levels of the Hitmap
programming approach: Partition, layout, and commu-
nications depends on the (sparse/dense) structure of
the input data. We have also implemented this second
benchmark in PETSc, where many of these features that
Hitmap offers has to be done manually.
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Fig. 4. Internal structure of example tile objects with different Shape implementations.

7.1 Sparse matrix-vector multiplication benchmark
The first benchmark is a simple matrix-vector multi-
plication y = Ax, where the A matrix is sparse and
the x and y vectors are dense. A single matrix-vector
product does not have enough computational load to
show significant results. Thus, the benchmark performs
several iterations using the result as the input for the
next iteration (xi+1 ← yi). This requires A to be a square
matrix. To prevent overflow in the output vector, the
matrix elements will be randomly initialized to satisfy∑n

j=1 A[i][j] ≤ 1 ∀i.

7.2 FEM benchmark
We have chosen a benchmark that calculates the equilib-
rium position of a 3-dimensional spring system, repre-
sented as a graph. Each node is connected to one or more
nodes by a spring. Each spring is assumed to be uniform
with the same length (l) and the same force constant (k).
Given an initial node configuration, the benchmark will
calculate the position where the nodes are in equilibrium
under forces applied to them. The mathematical back-
ground of this benchmark is explained in the on-line,
supplementary material.

8 EXPERIMENTAL RESULTS

Experimental work has been conducted to show that
the abstractions introduced by the library simplify the
complexity of codes that deal with the sparse domains
manually, without introducing significant performance
penalties.

We have developed three parallel programs for each
benchmark. The first one codifies an ad-hoc implemen-
tation of the CSR format to represent a sparse matrix
or a graph, manually dealing with the calls to Metis
partitioning and MPI communications. The second one
is an equivalent program written with the Hitmap li-
brary. The third implementation is made with the PETSc
library, using sparse PETSc matrices representation, and
the solvers for linear systems included in the library.

The Hitmap kernel code is not dependent upon the
Tile subclass used. Therefore, different extensions of
the Tile class can be used just by choosing a different
name, without affecting the rest of the code. This feature
allowed us to use the same code to experiment with any

of the three Shape implementations, in order to compare
their efficiency for different graph densities.

We use three different experimental platforms with
different architectures: A multicore shared-memory ma-
chine, and two distributed clusters of commodity
PCs. The shared-memory system, Geopar, is an Intel
S7000FC4URE server with four quad-core Intel Xeon
MPE7310 processors at 1.6GHz and 32GB of RAM.
The first distributed system is a homogeneous Beowulf
cluster of up to 20 Intel Core2 Duo nodes at 2.20GHz
and 1GB of RAM each, The second one is another
Beowulf cluster, composed by 19 AMD Athlon 3000+
single-core processors at 1.8GHz and 1Gb of RAM each.
Both clusters are interconnected by 100Mbit Ethernet
networks. The compiler used is GCC version 4.4. The
benchmarks codes, Hitmap library, and PETSc v3.2 li-
brary have been compiled with -O3 optimization. The
MPI implementation used is MPICH2 v1.4. In order to
expose the effects of exploiting multi-core processors in
a cluster architecture, we have run the experiments in
both clusters using up to twice as many processes as
physical nodes available. In the first cluster each process
is executed by a different core. But, in the second cluster,
the mono-core processors execute more than one process
when there are more processes than nodes.

8.1 Performance
To test whether the new Hitmap abstractions introduce
performance inefficiencies, we measure and compare the
performance of the two benchmarks described with the
following implementations: (1) the MPI code manually
developed and optimized; (2) the Hitmap version that
uses the CSR Shape implementation; and (3) the PETSC
version. CSR was chosen because it is the most efficient
representation for this problem. (An experimental com-
parison between CSR and Bitmap implementations can
be found in the on-line, supplementary material.) We
have conducted experiments with matrices and graphs.
We define the density degree (d) as the number of edges
divided by the square of the number of vertices: d =
|E|/|V |2. We use some input examples from the Public
Sparse Matrix Collection of the University of Florida [16]
representing typical graphs modeling real 3-dimensional
structrures, with very low density degree. We also exper-
iment with random graphs generated using the PreZER
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Fig. 5. Execution time comparison for Hitmap, manually developed, and PETSc implementations of the MV (matrix-
vector multiplication) benchmark using a representative inputset.
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Fig. 6. Execution time comparison for Hitmap, manually developed, and PETSc implementations of the FEM (Finite
Element Method) benchmark using a representative inputset.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

Ex
ec

ut
io

n 
tim

e

Density

1 Processor (SC Beowulf cluster)

Hitmap Metis
Hitmap Rows
PETSc Dense
PETSc Sparse

Manual C

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

Ex
ec

ut
io

n 
tim

e

Density

2 Processors (SC Beowulf cluster)

Hitmap Metis
Hitmap Rows
PETSc Dense
PETSc Sparse

Manual C

 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

Ex
ec

ut
io

n 
tim

e

Density

10 Processors (SC Beowulf cluster)

Hitmap Metis
Hitmap Rows
PETSc Dense
PETSc Sparse

Manual C

Fig. 7. Execution time comparison for Hitmap (Metis and Row partition), manually developed, and PETSc (Dense and
Sparse data structures) implementations of the FEM (Finite Element Method) benchmark using random generated
matrices with different densities in the in the single-core cluster.

implementation of the Erdõs-Rnyi Γv,p model [17]. This
model chooses a graph uniformly at random from the set
of graphs with v vertices where each edge has the same
independent probability p to exist. This method allow
us to build graphs with higher degrees of density that
may represent certain relationships such as those found
in social networks or economy transactions.

We will now present results for a representative input
set of each type. Section 5 of the supplementary mate-
rial includes a more comprehensive study using more
examples with different graph characteristics.

The matrix-vector multiplication benchmarks have
been run using 100 iterations of the algorithm explained
in Section 7.1. For the spring benchmark we have fixed
the number of iterations to end the computation, because
some graphs in the input set do not meet the conver-

gence conditions of the Jacobi method. The FEM bench-
mark has been run using 20 iterations for the Newton
method, and 100 iterations for the Jacobi method. We
have also executed the FEM benchmark using, randomly
generated graphs of 1 000 vertices with density degrees
from 0.1 to 0.9.

Fig. 5 shows the execution times (without initializa-
tion times) obtained for the matrix-vector multiplication
benchmark in the three architectures for a representative
inputset. For this benchmark, the times for all versions
with one process are the same. PETSc obtains slightly
better performance for a small number of processors,
but the scalability trend is the same for all versions
when the number of processes grows, specially when it
approaches the number of nodes in the cluster and the
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communication costs are highly noticeable.
Figure 6 shows the execution times of the FEM

benchmark, in the three architectures considered for a
representative graph example. The manual C and the
Hitmap versions present some irregularities for some
specific numbers of processes. This is mainly derived
from the results of the Metis partitioning policy used.
Typically it gets advantage of the graph structure to
obtain a well suited and balanced distribution. For the
simple graph structure of the example, sometimes the
technique selected by default does not minimize the
number of edges across different parts, deriving in more
expensive communications than a simpler row-blocks
partition like the one used by PETSc. In the shared-
memory architecture where communications are faster
these irregularities have much less impact. Despite these
irregularities the behavior is similar than the one ob-
served for the previous benchmark. The sequential part
of the computation is faster for PETSc, hiding the advan-
tages of the Hitmap version until a significant number of
processors is selected. We may also observe that for the
case of oversubscribing the system with more processes
than nodes, the performance of PETSc degrades while
Hitmap maintains the behavior of the manual version.

Finally, Fig. 7 shows the execution times obtained with
the FEM benchmark for different input graph densities.
For this experiment set we compare two additional
versions: Hitmap using a row partition instead of Metis
and PETSc using its dense matrix format. The figure
shows the results in the single-core cluster for 1, 2 and
10 processors. For the sequential execution, all versions
have a similar behavior except the PETSc dense version
that, as expected, has the same performance regardless
the density.

The Hitmap versions show the same result as the
manual version and they have better performance than
PETSc sparse version. Hitmap iterators are more efficient
than PETSc data accesses for degree densities that are not
very low. In addition, the communications in Hitmap
are also more efficient. Thus, the relative performance
between Hitmap and PETSc improves when the number
of processors grows.

8.2 Code complexity

To compare Hitmap code complexity with respect to the
parallel manual and PETSc implementations, we present
several code complexity and development-effort metrics.

For all three versions, we analyze the code containing
the upper abstraction level and the solvers that im-
plement the parallel algorithms. In the case of PETSc
they are included into the library as functions called
directly at the top level. Internal functions of Hitmap
and PETSc devoted to implement data partitions, data
accesses, marshaling, communications, etc, are skipped
in this analysis. We summarize here the main results. The
full details of this comparison can be found in Section 4
of the supplementary material.

For the matrix-vector multiplication benchmark,
Hitmap reduces the total number of code lines in 56%
comparing with the manual implementation and 37%
comparing with PETSc. Moreover, the McCabe’s cyclo-
matic complexity shows reductions of 66% and 39% re-
spectively. It is remarcable that lines specifically devoted
to parallelism control are reduced in 87% with respect to
the manual version.

For the FEM benchmark, Hitmap also achieves a great
reduction of the number of lines, 37% comparing with
the manual implementation and 61% comparing with
PETSc. The cyclomatic complexity for this benchmark
shows reductions of 54% and 73%. Lines specifically
devoted to parallelism control are reduced in 88% com-
pared with the manual version.

Using Hitmap abstractions greatly simplifies writing
and maintaining a parallel program comparing with
manually hardwiring the partition and communication
structures into the code.

In PETSc the partition and communication structures
are hidden into the solver and internal data structure
codes. For arrays, this encapsulation leads to very sim-
ple and efficient codes. Nevertheless, for other data
structures, such as graphs, the programmer needs to
manually implement most of the management of the
specific data structure on top of the arrays. Moreover,
adding a new solver implies to deal with the library
internals to generate a complete new module, a task that
implies a lower development effort in Hitmap.

Some extra code complexity in PETSc comes from
the limited support of data types. The array structures
in PETSc are always composed of single floating point
elements. For example, in the FEM benchmark, to store
the element positions, it is necessary to distribute an
array with 3 × n floating point numbers, introducing
special code details to align the partition. The Hitmap
implementation of the FEM benchmark uses a single
array of C structures for the position of each point, using
the same partition code as for any other data type.

In Hitmap the partition policy and communication
structures are independent of the solver codes and the
internal data representation in the tile subclass, and
easily changed with the plug-in system. The flexibil-
ity and versatility of the Hitmap approach allows to
introduce new data-structures, partitions, or program
communication structures with minimum impact on the
rest of the code.

9 CONCLUSIONS
In this paper we present an approach to integrate
dense and sparse data management in parallel program-
ming. This approach allows to develop explicit parallel
programs that automatically adapt their synchroniza-
tion and communication structures to dense or sparse
data domains and their specific partition/mapping tech-
niques.

We have shown how we introduced the proper ab-
stractions to support this approach in Hitmap, a library
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for efficient partition and communication of dense hi-
erarchical tiles. To illustrate how the approach and the
tool work, we have developed a simple matrix-vector
multiplication and a real FEM application using the
new Hitmap library. We have used these programs as
benchmarks to compare performance and programming
effort metrics with respect to a manually-developed MPI
code, and with an implementation that uses PETSc, a
state-of-the-art tool for parallel array computations.

Our experimental results show that the abstractions
introduced in the library do not lead to parallel per-
formance penalties, while greatly reducing the program-
ming effort.

We are currently working on integrating new partition
techniques and data-structure formats for other appli-
cations with different synchronization structures. The
Hitmap library is available under request.
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