
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH YEAR 1

Supplementary Material for “Blending
Extensibility and Performance in Dense and

Sparse Parallel Data Management”
Javier Fresno, Arturo Gonzalez-Escribano, and Diego R. Llanos, Senior Member, IEEE

Abstract—Dealing with both dense and sparse data in parallel environments usually leads to two different approaches: To rely on a
monolithic, hard-to-modify parallel library, or to code all data management details by hand. In this paper we propose a third approach,
that delivers good performance while the underlying library structure remains modular and extensible. Our solution integrates dense
and sparse data management using a common interface, that also decouples data representation, partitioning, and layout from the
algorithmic and parallel strategy decisions of the programmer. Our experimental results in different parallel environments show that this
new approach combines the flexibility obtained when the programmer handles all the details with a performance comparable to the use
of a state-of-the-art, sparse matrix parallel library.

Index Terms—Data partition, mapping techniques, sparse structures, parallel libraries.

F

Fig. 1. Spring system example: Initial node position (left)
and final equilibrium position (right).

1 HITMAP API
The basic Hitmap library API is summarized in Table 1.
The new elements of the Hitmap API to support the
sparse domains are summarized in Table 2.

2 FEM BENCHMARK

Our FEM benchmark calculates the equilibrium posi-
tion of a 3-dimensional spring system, represented as
a graph. Fig. 1 shows a 2-D example of a simple spring
system. The first part of the figure contains the initial
node position and the second one contains the final
equilibrium position after the benchmark execution.

Systems from real civil-engineering structures usually
have a high-degree of sparsity, but we may also generate
more artificial systems with any degree of sparsity. The
parallel algorithm parts the system into irregular pieces,
and executes several computation stages which need
neighbor synchronization.

The benchmark uses the Finite Element Method
(FEM). The FEM method is a numerical procedure to

• Departamento de Informática, Edif. Tecn. de la Información, Universidad
de Valladolid, Campus Miguel Delibes, 47011 Valladolid, Spain. E-mail:
{jfresno, arturo, diego}@infor.uva.es.

analyze structures, finding approximate solutions for
huge problems that cannot be solved by classical ana-
lytical methods, due to its complexity. The FEM method
reduces the complexity of the problem by performing a
discretization, using simple connected parts called finite
elements. The elements are represented by intercon-
nected nodes. There are N free nodes whose positions
(~ri) are arranged in a ρ vector, and M fixed nodes.

2.1 Mathematical background
We briefly show the mathematical background of the
FEM benchmark. To obtain the equations that determine
the equilibrium position, we have to start from the
potential energy. In this system the potential energy is
composed by the strain energy of elastic distortion in
each spring. The following equation calculates the po-
tential energy. The parameters are the current positions
of the free nodes.

V (~ρ) =
1

2

∑
i<j

k(l − ‖~ri − ~rj‖)2
i∈[1,N]

j∈[1,N+M]

Equilibrium position corresponds with the configu-
rations that make the gradient of the potential energy
function equal to zero, that is: ∇V (~ρ) = 0.

We have selected the Newton iterative method to find
the root in the previous equation. The Newton method,
also called the Newton-Raphson method, requires the
evaluation at arbitrary points of both the function and
its derivative. The Newton method geometrically ex-
tends the tangent line at a current point xi until it
crosses zero, and then sets the next guess xi+1 to the
abscissa of that zero-crossing. Its great advantage is that
it converges quadratically [1]. The generalized version
of the Newton-Raphson method for multiple dimensions
needs the derivative of the gradient function, that is, the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH YEAR 2

Object Method Description

SigShape SigShape(dims,
[begin,end, stride]*)

Signature Shape constructor. A SigShape is defined by a selection of indexes
in each of its dimensions.

Topology Topology(plugin) Topology constructor. This constructor creates a new topology object using
the selected plugin to arrange the available processors in a virtual topology.
It could be one of the Hitmap predefined plugins or a used-defined one.

Layout Layout(plugin,
topology,shape)

A Layout constructor determines the data distribution of a shape over
a virtual topology. Like in the topology objects, Hitmap offers several
predefined plugins.

getShape() This method returns the local shape assigned to the current processor.

Comm Comm(type,
TileIn,TileOut)

Creates a new Comm object that communicates data from tiles. The type
parameter define which communication to be performed.

do() Performs the communication encapsulated by the Comm object.

Pattern
Pattern(type) Creates a new communication pattern, which can be executed ordered or

unordered.
add(comm) Adds a new communication to the pattern.
do() Performs the communications associated in the pattern.

MatrixTile
Tile(shape, datatype) Tile constructor. It creates a tile object using the domain defined by a

shape object. The datatype parameter determines the type of data of each
single element.

allocate() Allocates the data for the tile.
elemAt(x,y,...) Method to access a element in the tile.

TABLE 1
Original classes and methods of the Hitmap API. Original classes that were internally redesigned without changing

the API are highlighted in grey.

Object Method Description

SparseShape

SparseShape() Sparse Shape constructor.
addVertex(x) Adds a new vertex to the structure.
addElem(x,y),
addEdge(x,y)

Equivalent methods to add an element to the matrix, or an edge to the
graph.

hasVertex(x) Checks whether a vertex is present in the sparse structure.
hasElem(x,y),
hasEdge(x,y)

Equivalent methods to check whether an element is present in the matrix,
or an edge in the graph.

GraphTile

GraphTile (Shape,
datatype, vertex/edges)

GraphTile constructor. It creates a graph tile object using the domain defined
by a shape object. The datatype parameter determines the type of data
of each single element. A GraphTile object could store data for the vertex
and/or egdes of a graph.

allocate() Allocates the data for the tile.
vertexAt(x) Method to access a vertex in the tile.
edgeAt(x,y) Method to access a edge in the tile. Equivalent to elemAt(x,y) of Tile class.

TABLE 2
New classes and methods of the Hitmap API to handle sparse domains.

hessian matrix of the potential energy function: V (~ρ).
A hessian matrix is a square matrix composed by the
second partial derivatives of the function. The iterative
method uses successive approximations to obtain a more
accurate solution, in each step it calculates:

~ρk+1 = ~ρk − ~ξk

where ~ξk is:

HessV (~ρk) · ~ξk = ∇V (~ρk)

The previous equation is a linear system that can
be rewritten in the Ax = b form, where the hessian
matrix function evaluated at the current position is the
coefficient matrix, the vector ~ξk has the unknown vari-
ables and the gradient function evaluated at the current
position is the constant vector. To solve this system we
have selected the Jacobi iterative method [2].

2.2 Parallel algorithm for the FEM benchmark

The parallel algorithm of the FEM benchmark performs
the following stages:

1) Graph load: A sparse graph representing the struc-
ture of the spring system, and the position coordi-
nates of the nodes, are loaded from files.

2) Node initialization: 10% of the nodes are randomly
set as fixed. The coordinates of the remaining nodes
(free nodes) are the variables of the benchmark.

3) Graph partition: The data partition is calculated.
4) Graph distribution: Nodes coordinates and their

free/fixed status are sent to the appropriate proces-
sor.

5) Approximation computation: A loop performs N
iterations of the Newton method to get an ap-
proximation of the equilibrium position. At each
iteration, the current gradient and hessian matrix
is calculated to generate a linear system which

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH YEAR 3

solution determines the new approximation. This
stage includes the communication of the new ap-
proximation coordinates.

6) System solution: For each iteration of the main
loop, the Jacobi method performs J iterations to
solve the linear system. This stage includes the
communication of the intermediate solutions.

7) Result check: The final result is checked using
the norm of the gradient vector to verify that the
benchmark has reached the equilibrium position.

2.3 Hitmap implementation

In this section we discuss how to implement the FEM
parallel algorithm using Hitmap, paying special atten-
tion to the functionalities to automatically compute the
data-layout, and communicate the neighbor’s vertices
values.

Fig. 2 shows the main function that contains the
complete parallel code. Line 3 calls a function that loads the
global graph information and coordinates positions from
files. Line 5 transparently generates a virtual topology of
processors using the internal information available about
the real topology. We have selected a plain topology,
that does not define specific neighborhood relationships.
Lines 7 to 12 correspond to the graph domain partition.
In Line 7, the data-layout is generated with a Hitmap
call. The layout parameters are: (a) The layout plug-in
name; (b) the virtual topology of processors generated
previously; and (c) the shape with the domain to dis-
tribute. The plug-in internally calls the Metis function
to determine the distribution of vertices. The result is a
HitLayout object. In line 9, we obtain the shape of the
local part of the graph containing just the local nodes.
On the following line, we use the layout to obtain an
extended shape with local nodes plus neighbor nodes
located at other processors. Line 12 calls a function that
declares and allocates the local extended graph.

In lines 14 to 16, three HitCom objects are created to
be used in the following stages. The first object (comA) is
used to perform the communication that will distribute
the original node values to the processor where the data
has been mapped. The second object (comB) contains the
information for the communication that will update the
neighbor nodes values in the Newton method. The last
object (comC) is created for the communication that will
update the neighbor approximation values in the Jacobi
method. Lines 18 and 19 invoke the starting communi-
cations previous to the first step of the algorithm.

The main loop for the Newton method starts at line 21.
This loop uses an iterator defined in the library to
traverse the local vertices of the graph (lines 24 to 27),
calculating the gradient and hessian for the Newton
method with the function calculate GH. The inner loop
for the Jacobi method starts at line 29. This loop traverses
the free nodes to get an approximation for the linear
system. Then, the new solution of the linear system is
copied from the tile new e to the tile e (line 36) and

the line 37 invokes the communication to update the
neighbor values of this tile. At this point, the inner loop
for the Jacobi method is over. Line 40 uses an iterator to
update the positions of the Node. Finally, line 45 updates
the neighbor nodes position with a communication.

3 CSR AND BITMAP COMPARISON

To compare the efficiency of the different Shape im-
plementations, we have executed the FEM benchmark
using two hundred, randomly generated graphs of 1 000
vertices with different density degrees as input sets. The
graphs have been generated using the method explained
in Section 8.1 of the paper. The first plot at Fig. 3 shows
the total execution time of the FEM benchmark in terms
of density degree. The CSR implementation outperforms
the Bitmap implementation for any density degree. CSR
is more efficient when accessing the whole structure
using iterators.

The second plot at Fig. 3 shows the memory space
used by the shapes. Bitmap shapes are more efficient in
storage space. In addition, their access methods are also
more efficient for shape specific operations (union, inter-
section, adding/deleting elements), and for algorithms
which do random accesses, like some graph traversing
algorithms.

Figures 4 and 5 show excerpts of code with the
structure of the CSR and Bitmap shapes, and the code
of the iterators used to traverse them. There are two
macro functions for each structure type that build the
loops for the row and column iterator. The CSR iterator
simply access the row indices array and the compressed
column array returning the current element. The Bitmap
iterator has the same interface but uses an additional
inline function to locate the next active bit in the bitmap
matrix.

4 CODE COMPLEXITY

To compare Hitmap code complexity with respect to the
parallel manual and PETSc implementations, we present
several code complexity and development-effort metrics.
Fig. 6 compares the number code lines and tokens.
We distinguish lines devoted to sequential computation,
declarations, parallelism (data layouts and communica-
tions), internal code of the solvers, and non-essential
lines (input-output, timers, etc).

For the manual, Hitmap and PETSc versions, we ana-
lyze the code containing the upper abstraction level and
the solvers that implement the parallel algorithms. In
the case of PETSc, they are included into the library as
functions called directly at the top level. In this analysis,
we skip the internal functions of Hitmap and PETSc
devoted to implement data partitions, data accesses,
marshaling, communications, etc.

Taking into account only essential line, our results for
the matrix-vector multiplication benchmark show that
the use of Hitmap library leads to a 56% reduction
on the total number of code lines with respect to the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH YEAR 4

1 int i, j, vertex;
2 // Load the graph from the file.
3 HitGraphTileCSR global_graph = init_graph();
4 // Create the topology object.
5 HitTopology topo = hit_topology(plug_topPlain);
6 // Distribute the graph among the processors.
7 HitLayout lay = hit_layout(plug_layMetis, topo, hit_tileShape(global_graph));
8 // Get the local shape and the extended shape.
9 HitShapeCSR local_shape = hit_layShape(lay);

10 HitShapeCSR ext_shape = hit_cShapeExpand(local_shape, hit_tileShape(global_graph), 1);
11 // Allocate memory of all the variables.
12 HitGraphTileCSR local_graph = init_allocated_graph(&ext_shape);
13 // Create the communication objects.
14 HitCom comA = hit_comSparseScatter(lay, &global_graph, &local_graph, HitNode);
15 HitCom comB = hit_comSparseUpdate(lay, &local_graph, HitNode);
16 HitCom comC = hit_comSparseUpdate(lay, &e, HitVector);
17 // Send all the data from the root proc to the other procs.
18 hit_comDo(&comA);
19 hit_comDo(&comB);
20 // Main loop for the newton method
21 for(i=0; i<ITER1; i++){
22 // Iterate trough all the vertices and
23 // obtain the gradient and the hessian.
24 hit_cShapeVertexIterator(vertex, local_shape){
25 Node current = hit_gcTileVertexAt(local_graph, vertex);
26 if (!current.fixed) calculate_GH(vertex);
27 }
28 // Loop for the jacobi method to solve the system.
29 for(j=0; j<ITER2; j++){
30 // Perform a iteration.
31 hit_cShapeVertexIterator(vertex, local_shape){
32 Node current = hit_gcTileVertexAt(local_graph, vertex);
33 if (!current.fixed) solve_system_iter(vertex);
34 }
35 // Update the displacement.
36 hit_gcTileCopyVertices(&e, &new_e);
37 hit_comDo(&comC);
38 }
39 // Update the position with the final displacement.
40 hit_cShapeVertexIterator(vertex, local_shape){
41 Node * current = & hit_gcTileVertexAt(local_graph, vertex);
42 if (!current->fixed)
43 subV(current->r, current->r, hit_gcTileVertexAt(e, vertex));
44 }
45 hit_comDo(&comB);
46 }

Fig. 2. Complete parallel kernel code of the Hitmap implementation for the FEM benchmark.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ex
ec

ut
io

n
tim

e

Density

1 Processor (SC Beowulf cluster)

CSR
Bitmap

1

2

3

4

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Si
ze

 in
 M

B

Density

CSR and Bitmap size comparison

CSR Shape
Bitmap Shape

Fig. 3. CSR and Bitmap performance and size comparison for random graphs with different densities.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH YEAR 5

1 /**
2 * CSR sparse shape, implements HitShape
3 */
4 typedef struct{
5 int cards[HIT_MAXDIMS]; /**< Cardinalities */
6 idxtype * xadj; /**< Row indices */
7 idxtype * adjncy; /**< Compressed columns */
8 HitNameList names[HIT_MAXDIMS]; /**< Name lists */
9 } HitCShape;

10

11 /**
12 * CSR row iterator
13 */
14 #define hit_cShapeRowIterator(var, shape) \
15 for(var=0; var<hit_cShapeCard(shape, 0); var++)
16

17 /**
18 * CSR column iterator
19 */
20 #define hit_cShapeColumnIterator(var, shape, row) \
21 for(\
22 var = hit_cShapeFistColumn(shape, row); \
23 var < hit_cShapeLastColumn(shape, row); \
24 var++ \
25)

Fig. 4. CSR structure and iterators.

manual MPI version. Regarding line devoted specifically
to parallelism, the percentage of reduction is up to 87%.

Taking into account the multiplication solver that is
part of PETSc and that has to be programmed for the
other versions, PETSc has only a reduction of 30%.

For the FEM benchmark, Hitmap has a total reduction
of 41% code lines. The PETSc version needs a higher
number of lines to program the Jacobi solver within the
library.

Tables 3 and 4 show the McCabe’s cyclomatic com-
plexity metric for each function. As can be seen, the
total cyclomatic complexity of Hitmap is less than half
the value of the manual version for both benchmarks.
PETSc has also a good reduction for the matrix-vector
multiplication benchmark. Howevever, it increases the
complexity for the FEM benchmark. As PETSc does not
have a complete support for graph operations, it needs
similar code than the Manual C version to generate the
hessian matrix from the elements positions, to feed the
solver on each iteration. The complexity increasement
is caused by the implementation of the functions for the
linear solvers and matrix operations.

5 EXPERIMENTAL RESULTS

Table 5 shows the properties of the matrices used as
examples in this paper. Fig. 7 shows a representation
of the location of non-zero elements in the matrices. The
first four ones are used for the matrix-vector multipli-
cation benchmark. They have a similar high number
of non-zero elements to create a big load. However,
they present a large difference in the number of rows
and densities, deriving in very different communication

Function C Hitmap PETSc
Main 6 5 2
Matrix and vector initialization 8 6 3
Matrix and vector partition 15 - -
Multiplication 3 1 -

Mult solver - - 10
Mult solver parallel - - 2
Mult solver computation - - 11

Vector redistribution 12 - 2
Vector norm 2 3 -
Other (Frees, Timers, etc) 4 2 -
Total 50 17 28

TABLE 3
Cyclomatic complexity of the multiplication benchmark.

Function C Hitmap PETSc
Main 11 7 2
Init graph 6 5 6
Init structures 5 4 -
Read coordinates 11 12 14
Preallocate system matrix - - 8
Graph partition 44 - -
Calculate system 6 5 12
Solve system 5 4 -

KSP solver - - 88
Jacobi solver - - 6
Mult solver - - 10
Mult solver parallel - - 2
Mult solver computation - - 25
Vector mult solver - - 13

Gradient norm 5 4 -
Scatter graph 5 - -
All to all graph 6 - -
Other 6 10 3
Total 110 51 189

TABLE 4
Cyclomatic complexity of the FEM benchmark.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH YEAR 6

1 /**
2 * Bitmap sparse shape, implements HitShape
3 */
4 typedef struct{
5 int cards[HIT_MAXDIMS]; /**< Cardinalities. */
6 int nz; /**< Non-zero elements. */
7 HIT_BITMAP_TYPE * data; /**< Bitmap array */
8 HitNameList names[HIT_MAXDIMS]; /**< Name lists */
9 } HitBShape;

10

11 /**
12 * Bitmap row iterator
13 */
14 #define hit_bShapeRowIterator(var,shape) \
15 for(var=0; var<hit_bShapeCard(shape, 0); var++)
16

17 /**
18 * Bitmap column iterator
19 */
20 #define hit_bShapeColumnIterator(var,shape,row) \
21 for(\
22 var=hit_bShapeColumnIteratorNext(shape, -1, row); \
23 var<hit_bShapeCard(shape,1); \
24 var=hit_bShapeColumnIteratorNext(shape, var, row) \
25)
26

27 /**
28 * Return the next column (next non-zero element of the bitmap)
29 */
30 static inline int hit_bShapeColumnIteratorNext(HitShape shape, int var){
31

32 size_t i;
33

34 // 1. Index of the element and Offset of the bit in the element
35 size_t xind = hit_bitmapShapeIndex(var);
36 size_t xoff = hit_bitmapShapeOffset(var);
37

38 // 2. Check if there is a 1 bit in the current element
39 HIT_BITMAP_TYPE element = hit_bShapeData(shape)[xind];
40 HIT_BITMAP_TYPE mask = HIT_BITMAP_1 >> xoff;
41 for(i=0; i<HIT_BITMAP_SIZE-xoff; i++){
42 if((mask & element) != 0){
43 return var + (int) i;
44 }
45 mask >>= 1;
46 }
47

48 // 3. Find the next element that have 1s.
49 xind ++;
50 while(hit_bShapeData(shape)[xind] == 0){
51 xind++;
52 }
53

54 // 4. We do the same as 2. to get the bit location
55 element = hit_bShapeData(shape)[xind];
56 mask = HIT_BITMAP_1;
57 for(i=0; i<HIT_BITMAP_SIZE; i++){
58 if((mask & element) != 0){
59 return (int) (xind * HIT_BITMAP_SIZE + i);
60 }
61 mask >>= 1;
62 }
63

64 // Bit not found
65 return -1;
66 }

Fig. 5. Bitmap structure and iterators.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH YEAR 7

 0

 200

 400

 600

 800

 1000

 1200

C Hitmap Petsc C Hitmap Petsc

Li
ne

s O
f C

od
e

Implementation

Lines Of Code

Seq. Computation
Declaration
Parallelism

Non essential
PETSc Solver

MV MultiplicationSpring

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

C Hitmap Petsc C Hitmap Petsc

To
ke

ns

Implementation

Tokens

Seq. Computation
Declaration
Parallelism

Non essential
PETSc Solver

MV MultiplicationSpring

Fig. 6. Comparison of number of code lines and number of tokens.

(a) human gene2 (b) atmosmodm (c) af shell1 (d) pkustk14 (e) filter3D (f) lung2

Fig. 7. Example matrices structure: Representation of non-zero elements location.

Matrix/Graph Rows/Nodes Non-zero d
(a) human gene2 14,340 18,068,388 8.8 ×10−2

(b) atmosmodm 1,489,752 10,319,760 4.6 ×10−6

(c) af shell1 504,855 17,562,051 6.9 ×10−5

(d) pkustk14 151,926 14,836,504 6.4 ×10−4

(e) filter3D 106,437 2,707,179 2.4 ×10−4

(f) lung2 109,460 492,564 4.1 ×10−5

TABLE 5
Characteristics of some input set examples for: (a)-(d)

vector-matrix multiplication, and (e)-(f) FEM benchmark.

sizes. The second set is used for the FEM benchmark. In
this case the number of rows is similar to produce similar
partition sizes. We select examples with very different
number of edges (non-zero elements) to produce very
different computational and communication load in this
benchmark.

Fig. 8 shows the execution times (not considering
initialization times) obtained for the matrix-vector mul-
tiplication benchmark. In the cluster architectures, the
times for all versions with one process are the same.
PETSc obtains slightly better performance for small
number of processors, but the scalability trend is the
same for all versions when the number of processors
approximates to the number of nodes. In the shared-
memory architecture we observe the same results in
the three versions for some example matrices (e.g. hu-
man gene2 or atmosmodm). For other example matrices

(e.g. af shell1 or pkustk) the PETSc version leads to half
the execution time of the sequential part of the code. This
difference appear to be related with the PETSc storage
policy and/or internal optimizations. It is not possible
to determine the exact reason without a deeper analysis
of the PETSc internals, as this effect appears for matrices
with different structures and densities, and it does not
appear in other similar ones (see Table 5 and Fig. 7). As
the number of processes increases the communication
times are relatively higher and the effect of the sequential
optimizations have less impact.

Fig. 9 shows the execution times obtained with the
FEM benchmark. The different experiments confirm the
results discussed in the paper.

Finally, Fig. 10 shows the execution times obtained
with the FEM benchmark for different input graph densi-
ties. The results are similar for all the three architectures.
As discussed in the paper, the Hitmap implementation
produces the same results than the manual implemen-
tation, obtainig better results than PETSc for growing
density degrees. The efficient communications improve
the results even more when the number of processes
grow.

REFERENCES
[1] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,

Numerical Recipes in C, 2nd ed. Cambridge University Press, 1992.
[2] G. H. Golub and C. F. Loan Van, Matrix computations, 3rd ed. The

Johns Hopkins University Press, 1996.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH YEAR 8

 0

 2

 4

 6

 8

 10

 12

 14

 3 7 11 15 19 23 27 31 35

Pr
oc

es
so

rs

Execution time

MV human_gene2 (SC Beowulf cluster)

Hitmap
PETSc

Manual C

 0

 2

 4

 6

 8

 10

 12

 14

 4 8 12 16 20 24 28 32 36 40

Pr
oc

es
so

rs

Execution time

MV human_gene2 (DC Beowulf cluster)

Hitmap
PETSc

Manual C

 2

 4

 6

 8

 10

 12

 14

 16

 18

 2 4 6 8 10 12 14 16

Pr
oc

es
so

rs

Execution time

MV human_gene2 (Geopar)

Hitmap
PETSc

Manual C

 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18

 3 7 11 15 19 23 27 31 35

Pr
oc

es
so

rs

Execution time

MV atmosmodm (SC Beowulf cluster)

Hitmap
PETSc

Manual C

 6

 8

 10

 12

 14

 16

 18

 4 8 12 16 20 24 28 32 36 40

Pr
oc

es
so

rs

Execution time

MV atmosmodm (DC Beowulf cluster)

Hitmap
PETSc

Manual C

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

Pr
oc

es
so

rs
Execution time

MV atmosmodm (Geopar)

Hitmap
PETSc

Manual C

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 3 7 11 15 19 23 27 31 35

Pr
oc

es
so

rs

Execution time

MV af_shell1 (SC Beowulf cluster)

Hitmap
PETSc

Manual C

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 4 8 12 16 20 24 28 32 36 40

Pr
oc

es
so

rs

Execution time

MV af_shell1 (DC Beowulf cluster)

Hitmap
PETSc

Manual C

 2

 4

 6

 8

 10

 12

 14

 16

 18

 2 4 6 8 10 12 14 16

Pr
oc

es
so

rs

Execution time

MV af_shell1 (Geopar)

Hitmap
PETSc

Manual C

 0

 1

 2

 3

 4

 5

 6

 7

 8

 3 7 11 15 19 23 27 31 35

Pr
oc

es
so

rs

Execution time

MV pkustk14 (SC Beowulf cluster)

Hitmap
PETSc

Manual C

 0

 1

 2

 3

 4

 5

 6

 7

 8

 4 8 12 16 20 24 28 32 36 40

Pr
oc

es
so

rs

Execution time

MV pkustk14 (DC Beowulf cluster)

Hitmap
PETSc

Manual C

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10 12 14 16

Pr
oc

es
so

rs

Execution time

MV pkustk14 (Geopar)

Hitmap
PETSc

Manual C

Fig. 8. Execution time comparison for Hitmap, manually developed, and PETSc implementations of the MV (matrix-
vector multiplication) benchmark using the (a), (b), (c), and (d) matrix examples.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH YEAR 9

 0

 50

 100

 150

 200

 250

 300

 3 7 11 15 19 23 27 31 35

Pr
oc

es
so

rs

Execution time

FEM filter3D (SC Beowulf cluster)

Hitmap
PETSc

Manual C

 0

 50

 100

 150

 200

 250

 300

 4 8 12 16 20 24 28 32 36 40

Pr
oc

es
so

rs

Execution time

FEM filter3D (DC Beowulf cluster)

Hitmap
PETSc

Manual C

 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240

 2 4 6 8 10 12 14 16

Pr
oc

es
so

rs

Execution time

FEM filter3D (Geopar)

Hitmap
PETSc

Manual C

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 3 7 11 15 19 23 27 31 35

Pr
oc

es
so

rs

Execution time

FEM lung2 (SC Beowulf cluster)

Hitmap
PETSc

Manual C

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 4 8 12 16 20 24 28 32 36 40

Pr
oc

es
so

rs

Execution time

FEM lung2 (DC Beowulf cluster)

Hitmap
PETSc

Manual C

 0

 10

 20

 30

 40

 50

 60

 70

 2 4 6 8 10 12 14 16

Pr
oc

es
so

rs

Execution time

FEM lung2 (Geopar)

Hitmap
PETSc

Manual C

Fig. 9. Speedup comparison for Hitmap, manually developed, and PETSc implementations of the FEM (Finite Element
Method) benchmark using the (e) and (f) matrix examples.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ex
ec

ut
io

n
tim

e

Density

1 Processor (SC Beowulf cluster)

Hitmap Metis
Hitmap Rows
PETSc Dense
PETSc Sparse

Manual C

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ex
ec

ut
io

n
tim

e

Density

2 Processors (SC Beowulf cluster)

Hitmap Metis
Hitmap Rows
PETSc Dense
PETSc Sparse

Manual C

 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ex
ec

ut
io

n
tim

e

Density

10 Processors (SC Beowulf cluster)

Hitmap Metis
Hitmap Rows
PETSc Dense
PETSc Sparse

Manual C

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ex
ec

ut
io

n
tim

e

Density

1 Processor (DC Beowulf cluster)

Hitmap Metis
Hitmap Rows
PETSc Dense
PETSc Sparse

Manual C

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ex
ec

ut
io

n
tim

e

Density

2 Processors (DC Beowulf cluster)

Hitmap Metis
Hitmap Rows
PETSc Dense
PETSc Sparse

Manual C

 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ex
ec

ut
io

n
tim

e

Density

10 Processors (DC Beowulf cluster)

Hitmap Metis
Hitmap Rows
PETSc Dense
PETSc Sparse

Manual C

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ex
ec

ut
io

n
tim

e

Density

1 Processor (geopar)

Hitmap Metis
Hitmap Rows
PETSc Dense
PETSc Sparse

Manual C

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ex
ec

ut
io

n
tim

e

Density

2 Processors (geopar)

Hitmap Metis
Hitmap Rows
PETSc Dense
PETSc Sparse

Manual C

 0

 5

 10

 15

 20

 25

 30

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ex
ec

ut
io

n
tim

e

Density

10 Processors (geopar)

Hitmap Metis
Hitmap Rows
PETSc Dense
PETSc Sparse

Manual C

Fig. 10. Execution time comparison for Hitmap (Metis and Row partition), manually developed, and PETSc (Dense
and Sparse data structures) implementations of the FEM (Finite Element Method) benchmark using random generated
matrices with different densities.

