
5/22/2007 Distributed Computing, M. L. Liu 1

The Socket API

Mei-Ling Liu

5/22/2007 Distributed Computing, M. L. Liu 2

Introduction
• The socket API is an Interprocessing

Communication (IPC) programming interface
originally provided as part of the Berkeley UNIX
operating system.

• It has been ported to all modern operating
systems, including Sun Solaris and Windows
systems.

• It is a de facto standard for programming IPC,
and is the basis of more sophisticated IPC
interface such as remote procedure call and
remote method invocation.

5/22/2007 Distributed Computing, M. L. Liu 3

The conceptual model of the socket API

a socket

Process A Process B

5/22/2007 Distributed Computing, M. L. Liu 4

The socket API
• A socket API provides a programming

construct termed a socket. A process
wishing to communicate with another
process must create an instance, or
instantiate, such a construct

• The two processes then issues operations
provided by the API to send and receive
data.

5/22/2007 Distributed Computing, M. L. Liu 5

Connection-oriented & connectionless
datagram socket

• A socket programming construct can make
use of either the UDP or TCP protocol.

• Sockets that use UDP for transport are
known as datagram sockets, while sockets
that use TCP are termed stream sockets.

• Because of its relative simplicity, we will first
look at datagram sockets, returning to
stream sockets after we have introduced the
client-server model in Chapter 5.

5/22/2007 Distributed Computing, M. L. Liu 6

Connection-oriented & connectionless
datagram socket

Datagram sockets can support both connectionless
and connection-oriented communication at the
application layer. This is so because even though
datagrams are sent or received without the notion of
connections at the transport layer, the runtime
support of the socket API can create and maintain
logical connections for datagrams exchanged
between two processes, as you will see in the next
section.

(The runtime support of an API is a set of software
that is bound to the program during execution in
support of the API.)

http://webopedia.internet.com/TERM/r/bind.html

5/22/2007 Distributed Computing, M. L. Liu 7

Connection-oriented & connectionless
datagram socket

Process A
socket
API runtime

support
Process B

socket
API runtime

support

transport layer software transport layer software

a datagram
a logical connection created and maintained
by the runtime support of the datagram
socket API

Process A
socket
API runtime

support
Process B

socket
API runtime

support

transport layer software transport layer software

connectionless datagram socket

connection-oriented datagram socket

5/22/2007 Distributed Computing, M. L. Liu 8

The Java Datagram Socket API
In Java, two classes are provided for
the datagram socket API:

1. the DatagramSocket class for the sockets.
2. the DatagramPacket class for the datagram

exchanged.
A process wishing to send or receive
data using this API must instantiate a
DatagramSocket object, or a socket in
short. Each socket is said to be bound
to a UDP port of the machine local to
the process

5/22/2007 Distributed Computing, M. L. Liu 9

The Java Datagram Socket API
To send a datagram to another process, a process:
• creates an object that represents the datagram itself.

This object can be created by instantiating a
DatagramPacket object which carries
1. (i) the payload data as a reference to a byte array,

and
2. (ii) the destination address (the host ID and port

number to which the receiver’s socket is bound.
• issues a call to a send method in the

DatagramSocket object, specifying a reference to
the DatagramPacket object as an argument

5/22/2007 Distributed Computing, M. L. Liu 10

The Java Datagram Socket API
• In the receiving process, a DatagramSocket

object must also be instantiated and bound
to a local port, the port number must agree
with that specified in the datagram packet of
the sender.

• To receive datagrams sent to the socket,
the process creates a datagramPacket
object which references a byte array and
calls a receive method in its
DatagramSocket object, specifying as
argument a reference to the
DatagramPacket object.

5/22/2007 Distributed Computing, M. L. Liu 11

The Data Structures in the sender and
receiver programs

a byte array

a DatagramPacket object

receiver's
address

a DatagramSocket
 object

sender process

a byte array

a DatagramPacket object

a DatagramSocket
 object

receiver process

send

receive

object reference

data flow

5/22/2007 Distributed Computing, M. L. Liu 12

The program flow in the sender and
receiver programs

create a datagram socket and
 bind it to any local port;
place data in a byte array;
create a datagram packet, specifying
 the data array and the receiver's
 address;
invoke the send method of the
 socket with a reference to the
datagram packet;

create a datagram socket and
 bind it to a specific local port;
create a byte array for receiving the data;
create a datagram packet, specifying
 the data array;
invoke the receive method of the
 socket with a reference to the
datagram packet;

sender program receiver program

5/22/2007 Distributed Computing, M. L. Liu 13

Event synchronization with the connectionlss
datagram socketsAPI

server client

request

response
blocked

send

receive

receive

send

blocking receive,
nonblocking send
in a request-response
protocol

if data is sent before a corresponding
receive operation is issued, the data will

be discarded by the runtime support
and will not be received.

5/22/2007 Distributed Computing, M. L. Liu 14

Setting timeout
To avoid indefinite blocking, a timeout can
be set with a socket object:
void setSoTimeout(int timeout)

Set a timeout for the blocking receive from this socket, in

milliseconds.
Once set, the timeout will be in effect
for all blocking operations.

http://java.sun.com/j2se/1.3/docs/api/java/net/DatagramSocket.html#setSoTimeout(int)

5/22/2007 Distributed Computing, M. L. Liu 15

Key Methods and Constructors
Method/Constructor Description
DatagramPacket (byte[] buf,
int length)

Construct a datagram packet for receiving packets of
length length; data received will be stored in the byte
array reference by buf.

DatagramPacket (byte[] buf,
int length, InetAddress address,
int port)

Construct a datagram packet for sending packets of
length length to the socket bound to the specified port
number on the specified host ; data received will be
stored in the byte array reference by buf.

DatagramSocket ()

Construct a datagram socket and binds it to any
available port on the local host machine; this
constructor can be used for a process that sends data
and does not need to receive data.

DatagramSocket (int port) Construct a datagram socket and binds it to the
specified port on the local host machine; the port
number can then be specified in a datagram packet
sent by a sender.

void close() Close this datagramSocket object
void receive(DatagramPacket p)

Receive a datagram packet using this socket.

void send (DatagramPacket p) Send a datagram packet using this socket.
void setSoTimeout (int timeout)

Set a timeout for the blocking receive from this
socket, in milliseconds.

5/22/2007 Distributed Computing, M. L. Liu 16

The coding

//Excerpt from a receiver program
DatagramSocket ds = new DatagramSocket(2345);
DatagramPacket dp =
 new DatagramPacket(buffer, MAXLEN);
ds.receive(dp);
len = dp.getLength();
System.out.Println(len + " bytes received.\n");
String s = new String(dp.getData(), 0, len);
System.out.println(dp.getAddress() + " at port "
 + dp.getPort() + " says " + s);

// Excerpt from the sending process
InetAddress receiverHost=

InetAddress.getByName("localHost");
DatagramSocket theSocket = new DatagramSocket();
String message = "Hello world!";
byte[] data = message.getBytes();
data = theLine.getBytes();
DatagramPacket thePacket
 = new DatagramPacket(data, data.length,

receiverHost, 2345);
theSocket.send(theOutput);

5/22/2007 Distributed Computing, M. L. Liu 17

Connectionless sockets
With connectionless sockets, it is possible for multiple
processes to simultaneously send datagrams to the same
socket established by a receiving process, in which case
the order of the arrival of these messages will be
unpredictable, in accordance with the UDP protocol

Process A

Process B

Process C

Process A

Process B

Process C

 Figure 3a Figure 3ba connectionless
datagram socket

5/22/2007 Distributed Computing, M. L. Liu 18

Code samples
• Example1Sender.java, ExampleReceiver.java
• MyDatagramSocket.java,

Example2SenderReceiver.java ,
Example2ReceiverSender.java

5/22/2007 Distributed Computing, M. L. Liu 19

Connection-oriented
datagram socket API

It is uncommon to employ datagram sockets
for connection-oriented communication; the
connection provided by this API is
rudimentary and typically insufficient for
applications that require a true connection.
Stream-mode sockets, which will be
introduced later, are more typical and more
appropriate for connection-oriented
communication.

5/22/2007 Distributed Computing, M. L. Liu 20

Methods calls for connection-oriented datagram
socket

A connection is made for a socket with a remote socket.
Once a socket is connected, it can only exchange data
with the remote socket.
If a datagram specifying another address is sent using
the socket, an IllegalArgumentException will occur.
If a datagram from another socket is sent to this socket,
The data will be ignored.

Method/Constructor Description
public void
connect(InetAddress address,
 int port)

Create a logical connection between this socket and
a socket at the rem ote address and port.

public void disconnect()

Cancel the current connection, if any, from this
socket.

5/22/2007 Distributed Computing, M. L. Liu 21

Connection-oriented Datagram Socket

The connection is unilateral, that is, it is
enforced only on one side. The socket
on the other side is free to send and
receive data to and from other sockets,
unless it too commits to a connection
to the other socket.
See Example3Sender,
Example3Receiver.

5/22/2007 Distributed Computing, M. L. Liu 22

The Stream-mode Socket API
• The datagram socket API supports the

exchange of discrete units of data (that
is, datagrams).

• the stream socket API provides a
model of data transfer based on the
stream-mode I/O of the Unix operating
systems.

• By definition, a stream-mode socket
supports connection-oriented
communication only.

5/22/2007 Distributed Computing, M. L. Liu 23

Stream-mode Socket API
(connection-oriented socket API)

... ...
a data stream

process

write operation
read operation

P1 P2

a stream-mode data socket

5/22/2007 Distributed Computing, M. L. Liu 24

Stream-mode Socket API

• A stream-mode socket is established for
data exchange between two specific
processes.

• Data stream is written to the socket at one
end, and read from the other end.

• A stream socket cannot be used to
communicate with more than one process.

5/22/2007 Distributed Computing, M. L. Liu 25

Stream-mode Socket API

In Java, the stream-mode socket API is
provided with two classes:
– Server socket: for accepting connections; we

will call an object of this class a connection
socket.

– Socket: for data exchange; we will call an
object of this class a data socket.

5/22/2007 Distributed Computing, M. L. Liu 26

Stream-mode Socket API program flow

connection listener (server)

create a connection socket
and listen for connection
requests;
accept a connection;
creates a data socket for reading from
or writing to the socket stream;
get an input stream for reading
to the socket;
read from the stream;
get an output stream for writing
to the socket;
write to the stream;
close the data socket;
close the connection socket.

connection requester (server)

create a data socket
and request for a connection;

get an output stream for writing
to the socket;
write to the stream;

get an input stream for reading
to the socket;
read from the stream;
close the data socket.

5/22/2007 Distributed Computing, M. L. Liu 27

The server (the connection listener)

server

client 1

connection operation

send/receive operaton

A server uses two sockets: one for accepting connections, another for send/receive

client 2

connection
 socket

data socket

5/22/2007 Distributed Computing, M. L. Liu 28

Key methods in the ServerSocket class

Method/constructor Description
ServerSocket(int port) Creates a server socket on a specified port.
Socket accept()
 throws
IOException

Listens for a connection to be made to this socket and
accepts it. The method blocks until a connection is made.

public void close()
 throws IOException

Closes this socket.

void
setSoTimeout(int timeout)
 throws
SocketException

Set a timeout period (in milliseconds) so that a call to
accept() for this socket will block for only this amount of
time. If the timeout expires, a
java.io.InterruptedIOException is raised

Note: Accept is a blocking operation.

5/22/2007 Distributed Computing, M. L. Liu 29

Key methods in the Socket class
Method/constructor Description

Socket(InetAddress address,
int port)

Creates a stream socket and connects it to the
specified port number at the specified IP address

void close()
 throws IOException

Closes this socket.

InputStream getInputStream()
throws IOException

Returns an input stream so that data may be read
from this socket.

OutputStream getOutputStream(
)throws IOException

Returns an output stream so that data may be written
to this socket.

void setSoTimeout(int timeout)
throws SocketException

Set a timeout period for blocking so that a read()
call on the InputStream associated with this Socket
will block for only this amount of time. If the
timeout expires, a java.io.InterruptedIOException
is raised

A read operation on the InputStream is blocking.
A write operation is nonblocking.

5/22/2007 Distributed Computing, M. L. Liu 30

Connection-oriented socket API-3

Server establishes a
socket sd1 with local
address, then listens
for incoming
connection on sd1

Client establishes
a socket with
remote (server's)
address.

server client
1.

2. Server accepts the
 connection request
 and creates a new
 socket sd2 as a result.

sd1

sd1

sd2

5/22/2007 Distributed Computing, M. L. Liu 31

sd1

sd2

sd1

sd2

3. Server issues receive
 operation using sd2. Client issues

send operation.

4. Server sends response
 using sd2.

sd1
5. When the protocol
 has completed, server
 closes sd2; sd1 is
 used to accept the
 next connection

Client closes its
socket when the
protocol has
completed

Connection-oriented socket API-3

5/22/2007 Distributed Computing, M. L. Liu 32

Connectionless socket API
P1 P2

P2 establishes
a local socket

P1 establishes
a local socket

P2 sends a datagram
addressed to P1

P1 issues a
receive operation
to receive the
datagram.

5/22/2007 Distributed Computing, M. L. Liu 33

Example 4 Event Diagram

accept

write

close
data socket

close
connection socket

connect request
(from Socket constructor)

read

ConnectionAcceptor ConnectionRequestor
time

process executing

process suspendedclose socket

an operation
message

5/22/2007 Distributed Computing, M. L. Liu 34

Example4

 try {
nt portNo;

 String message;
 // instantiates a socket for accepting connection
 ServerSocket connectionSocket = new ServerSocket(portNo);
 Socket dataSocket = connectionSocket.accept();

 // get a output stream for writing to the data socket
O utputStream outStream = dataSocket.getO utputStream();

 // create a PrinterWriter object for character-mode output
PrintWriter socketO utput =

 new PrintWriter(new O utputStreamWriter(outStream));
 // write a message into the data stream

socketO utput.println(message);
 //The ensuing flush method call is necessary for the data to
 // be written to the socket data stream before the
 // socket is closed.

socketO utput.flush();
dataSocket.close();
connectionSocket.close();

 } // end try
 catch (Exception ex) {
System.out.println(ex);

 }

Example4ConnectionAcceptor Example4ConnectionReceiver

 try {
 InetAddress acceptorHost =

InetAddress.getByName(args[0]);
 int acceptorPort = Integer.parseInt(args[1]);
 // instantiates a data socket
 Socket mySocket = new Socket(acceptorHost, acceptorPort);
 // get an input stream for reading from the data socket

InputStream inStream = mySocket.getInputStream();
 // create a BufferedReader object for text-line input

BufferedReader socketInput =
 new BufferedReader(new InputStreamReader(inStream));
 // read a line from the data stream
 String message = socketInput.readLine();

System.out.println("\t" + message);
mySocket.close();

 } // end try
 catch (Exception ex) {

System.out.println(ex);
 }

5/22/2007 Distributed Computing, M. L. Liu 35

Secure Sockets
http://java.sun.com/products/jsse/

• Secure sockets perform encryption on the data
transmitted.

• The JavaTM Secure Socket Extension (JSSE) is a Java
package that enables secure Internet communications.

• It implements a Java version of SSL (Secure Sockets
Layer) and TLS (Transport Layer Security) protocols

• It includes functionalities for data encryption, server
authentication, message integrity, and optional client
authentication.

• Using JSSE, developers can provide for the secure
passage of data between a client and a server running
any application protocol.

5/22/2007 Distributed Computing, M. L. Liu 36

The Java Secure Socket Extension API
http://java.sun.com/products/jsse/doc/apidoc/index.html

• Import javax.net.ssl;
• Class SSLServerSocket is a subclass of ServerSocket,

and inherits all its methods.
• Class SSLSocket is a subclass of Socket, and inherits

all its methods.
• There are also classes for

– Certification
– Handshaking
– KeyManager
– SSLsession

5/22/2007 Distributed Computing, M. L. Liu 37

Summary
• In this chapter, we introduced the socket

application program interface for
interprocess communication.

• The socket API is widely available as a
programming facility for IPC at a relatively
low level of abstraction.

5/22/2007 Distributed Computing, M. L. Liu 38

Summary - 2
• Using the Java socket APIs, we

introduced two types of sockets:
– The datagram sockets, which uses the User

Datagram Protocol (UDP) at the transport
layer to provide the sending and receiving of
discrete data packets known as datagrams.

– The stream-mode socket, which uses the
Tranport Layer Protocol (TCP) at the transport
layer to provide the sending and receiving of
data using a data stream.

5/22/2007 Distributed Computing, M. L. Liu 39

Summary - 3
Key points of the Java datagram socket

API:
• It supports both connectionless

communication and connection-
oriented communication.

• Each process must create a
DatagramSocket object to send/receive
datagrams.

• Each datagram is encapsulated in a
DatagramPacket object.

5/22/2007 Distributed Computing, M. L. Liu 40

Summary - 4
Key points of the Java datagram socket API continued:
• In connectionless communication, a datagram

socket can be used to send to or receive from any
other datagram socket; in connection-oriented
communication, a datagram socket can only be
used to send to or receive from the datagram socket
attached to the other end of the connection.

• Data for a datagram are placed in a byte array; if a
byte array of insufficient length is provided by a
receiver, the data received will be truncated.

• The receive operation is blocking; the send
operation is non-blocking.

5/22/2007 Distributed Computing, M. L. Liu 41

Summary - 5
Key points of the Java stream-mode socket

API:
• It supports connection-oriented communication

only.
• A process plays the role of connection-acceptor,

and creates a connection socket using the
ServerSocket class. It then accepts connection
requests from other processes.

• A process (a connection-requestor) creates a data
socket using the Socket class, the constructor of
which issues a connection request to the
connection-acceptor.

5/22/2007 Distributed Computing, M. L. Liu 42

Summary - 6
More key points of the Java stream-mode socket API :
• When a connection request is granted, the connection-

acceptor creates a data socket, of the Socket class, to send
and receive data to/from the connection-requestor. The
connection-requestor can also send and/or receive data
to/from the connection-acceptor using its data socket.

• The receive (read), the connection-accept operation, and
the connection-request operations are blocking; the send
(write) operation is non-blocking.

• The reading and writing of data into the socket of data
stream are decoupled: they can be performed in different
data units. See Figure 8.

5/22/2007 Distributed Computing, M. L. Liu 43

Summary - 7
Key points of secure sockets:
• Secure socket APIs are available for

transmission of confidential data.
• Well known secure socket APIs include the

Secure Socket Layer (SSL) and Java’s
Secure Socket Extension (JSSE). Secure
socket APIs have methods that are similar
to the connection-oriented socket APIs.

	The Socket API
	Introduction
	The conceptual model of the socket API
	The socket API
	Connection-oriented & connectionless datagram socket
	Connection-oriented & connectionless datagram socket
	Connection-oriented & connectionless datagram socket
	The Java Datagram Socket API
	The Java Datagram Socket API
	The Java Datagram Socket API
	The Data Structures in the sender and receiver programs
	The program flow in the sender and receiver programs
	Event synchronization with the connectionlss datagram socketsAPI
	Setting timeout
	Key Methods and Constructors
	The coding
	Connectionless sockets
	Code samples
	Connection-oriented� datagram socket API
	Methods calls for connection-oriented datagram socket
	Connection-oriented Datagram Socket
	The Stream-mode Socket API
	Stream-mode Socket API�(connection-oriented socket API)
	Stream-mode Socket API
	Stream-mode Socket API
	Stream-mode Socket API program flow
	The server (the connection listener)
	Key methods in the ServerSocket class
	Key methods in the Socket class
	Connection-oriented socket API-3
	Connectionless socket API
	Example 4 Event Diagram
	Example4
	Secure Sockets�http://java.sun.com/products/jsse/
	The Java Secure Socket Extension API�http://java.sun.com/products/jsse/doc/apidoc/index.html
	Summary
	Summary - 2
	Summary - 3
	Summary - 4
	Summary - 5
	Summary - 6
	Summary - 7

