
Distributed Computing, Liu 1

The Client-Server Model – part 1

M. L. Liu

Distributed Computing, Liu 2

Introduction
The Client-Server paradigm is the most
prevalent model for distributed computing
protocols.
It is the basis of all distributed computing
paradigms at a higher level of abstraction.
It is service-oriented, and employs a
request-response protocol.

Distributed Computing, Liu 3

The Client-Server Paradigm
A server process, running on a server host, provides access
to a service.
A client process, running on a client host, accesses the
service via the server process.
The interaction of the process proceeds according to a
protocol.

...

service request

a server process
a client process

a service

The Client-Server Paradigm, conceptual

Server host

Client host

Distributed Computing, Liu 4

Client-server applications and services

An application based on the client-server
paradigm is a client-server application.
On the Internet, many services are Client-
server applications. These services are
often known by the protocol that the
application implements.
Well known Internet services include
HTTP, FTP, DNS, finger, gopher, etc.
User applications may also be built using
the client-server paradigm.

Distributed Computing, Liu 5

A Sample Client-Server Application

Distributed Computing, Liu 6

Client-server system architecture
vs.

Client-server distributed computing

In the client-server system architecture,
the terms clients and servers refer to
computers, while in the client-server
distributed computing paradigm, the
terms refer to processes.

Distributed Computing, Liu 7

Client-server, an overloaded term

...

server host

client hosts

Client hosts make use of services
provided on a server host.

Client-Server System Architecture
...

service request

a server process
a client process

a service

The Client-Server Paradigm, conceptual

Server host

Client host

Client-Server Computing Paradigm

Client processes (objects) make use of a service
provided by a server process (object) running on
a server host.

Distributed Computing, Liu 8

A protocol/service session

In the context of the client-server model, we will
use the term session to refer to the interaction
between the server and one client. The service
managed by a server may be accessed by multiple
clients who desire the service, sometimes
concurrently. Each client, when serviced by the
server, engages in a separate session with the
server, during which it conducts a dialog with the
server until the client has obtained the service it
required

Distributed Computing, Liu 9

A service session

start service

accept a client's
request for a session

conduct a session
with the client

Distributed Computing, Liu 10

The Protocol for a Network Service
A protocol is needed to specify the rules that
must be observed by the client and the server
during the conductin of a service. Such rules
include specifications on matters such as (i)
how the service is to be located, (ii) the
sequence of interprocess communication,
and (iii) the representation and interpretation
of data exchanged with each IPC.
On the Internet, such protocols are specified
in the RFCs.

Distributed Computing, Liu 11

Locating the service
A mechanism must be available to allow a client
process to locate a server for a given service.
A service can be located through the address of the

server process, in terms of the host name and
protocol port number assigned to the server process.
This is the scheme for Internet services. Each
Internet service is assigned to a specific port number.
In particular, a well-known service such as ftp, HTTP,
or telnet is assigned a default port number reserved
on each Internet host for that service.
At a higher level of abstraction, a service may be
identified using a logical name registered with a
registry, the logical name will need to be mapped to
the physical location of the server process. If the
mapping is performed at runtime (that is, when a
client process is run), then it is possible for the
service’s location to be dynamic or moveable

Distributed Computing, Liu 12

The interprocess communications and
event synchronization

client server

request1

request2

requestn

response1

response2

responsen

Distributed Computing, Liu 13

Implementation of a network service
Any implementation of the client or server

program for this service is expected to adhere
to the specification for the protocol, including
how the dialogs of each session should
proceed. Among other things, the
specification defines (i) which side (client or
server) should speak first, (ii) the syntax and
semantic of each request and response, and
(iii) the action expected of each side upon
receiving a particular request or response.

Distributed Computing, Liu 14

The interprocess communications and
event synchronization

Typically, the interaction of the client and
server processes follows a request-response
pattern. client server

request1

request2

requestn

response1

response2

responsen

Distributed Computing, Liu 15

Session IPC examples
The dialog in each session follows a pattern prescribed in the

protocol specified for the service.
Daytime service [RFC867]:

Client: Hello, <client address> here. May I have a timestamp
please.

Server: Here it is: (time stamp follows)
World Wide Web session:

Client: Hello, <client address> here.
Server: Okay. I am a web server and speaks protocol

HTTP1.0.
Client: Great, please get me the web page index.html at the

root of your document tree.
Server: Okay, here’s what’s in the page: (contents follows).

Distributed Computing, Liu 16

Client-server protocol data
representation

Part of the specification of a protocol is the syntax
and semantics of each request and response.
The choice of data representation depends on the
nature and the needs of the protocol.
Representing data using text (character strings) is
common, as it facilitates data marshalling and
allows the data to be readable by human.
Most well known Internet protocols are client-
server, request-response, and text-base.

Distributed Computing, Liu 17

Software Engineering for a Network Service

presentation logic

application logic

service logic

application logic

service logic

client-side software
server-side software

Distributed Computing, Liu 18

Daytime Client-server using Connectionless
Datagram Socket

Client-side presentation logic
DaytimeClient1.java encapsulates the client-side

presentation logic; that is, it provides the interface for a
user of the client process. You will note that the code in
this class is concerned with obtaining input (the server
address) from the user, and displaying the output (the
timestamp) to the user. To obtain the timestamp, a method
call to a “helper” class, DaytimeClientHelper1.java, is
issued. This method hides the details of the application
logic and the underlying service logic. In particular, the
programmer of DaytimeClient1.java need not be aware of
which socket types is used for the IPC.

Distributed Computing, Liu 19

Daytime Client-server using Connectionless
Datagram Socket - continued

Client-side Application logic
The DaytimeClientHelper1.java class (Figure 6b)

encapsulates the client-side application logic. This module
performs the IPC for sending a request and receiving a
response, using a specialized class of the DatagramSocket,
myClientDatagramSocket. Note that the details of using
datagram sockets are hidden from this module. In
particular, this module does not need to deal with the byte
array for carrying the payload data.

Service logic
The MyClientDatagram.java (Figure 6c) class provides

the details of the IPC service, in this case using the
datagram socket API.

Distributed Computing, Liu 20

Advantages of separating the layers of logic
• It allows each module to be developed by people with special

skills to focus on a module for which they have expertise.
Software engineers who are skilled in user interface may
concentrate on developing the modules for the presentation
logic, while those specializing in application logic and the
service logic may focus on developing the other modules.

• The separation allows modifications to be made to the logic at
the presentation without requiring changes to be made at the
lower layers. For example, the user interface can be changed
from text-mode to graphical without requiring any change be
made to the application logic or the service logic. Likewise,
changes made in the application logic should be transparent to
the presentation layer, as we will soon illustrate with an example
client-server application.

Distributed Computing, Liu 21

Server-side software
Presentation logic

Typically, there is very little presentation logic on the server-
side. In this case, the only user input is for the server port,
which, for simplicity, is handled using a command-line
argument.

Application logic
The DaytimeServer1.java class encapsulates the server-side
application logic. This module executes in a forever loop, waiting for
a request form a client and then conduct a service session for that
client. The module performs the IPC for receiving a request and
sending a response, using a specialized class of the DatagramSocket,
myServerDatagramSocket. Note that the details of using datagram
sockets are hidden from this module. In particular, this module does
not need to deal with the byte array for carrying the payload data.

Service logic
The MyServerDatagram.java class provides the details of the IPC
service, in this case using the datagram socket API.

Distributed Computing, Liu 22

Example protocol: daytime

client server

m

sequence diagram

data representation: text (character strings)
data format:
m : contains a timestamp, in a format such as
 Wed Jan 30 09:52:48 2002

Defined in RFC867

Distributed Computing, Liu 23

Daytime Protocol

client server

m2

sequence diagram

data representation: text (character strings)
data format:
m1; a null message - contents will be ignored.
m2 : contains a timestamp, in a format such as
 Wed Jan 30 09:52:48 2002

m1

Distributed Computing, Liu 24

Daytime Protocol Implementation
Sample 1 – using connectionless sockets:
DaytimeServer1.java
DaytimeClient1.java

Distributed Computing, Liu 25

The getAddress and getPort Methods

Method (of
DatagramPacket class)

Description

public InetAddress getAddress()

Return the IP address of the remote host from a socket of
which the datagram was received.

public int getPort() Return the port number on the remote host from a socket
of which the datagram was received.

Distributed Computing, Liu 26

UML Diagram for the Datagram
Daytime server

DaytimeServer1

DatagramMessage

MyServerDatagram
Socket

DatagramSocket

DatagramPacet

sendMessage()
receiveMessage()
receiveMessageAnd
Sender()

presentation + application
 logic

service logic

Distributed Computing, Liu 27

UML Diagram for the Datagram
Daytime Client

DaytimeClientHelper1
MyClientDatagram
Socket DatagramSocket

DatagramPacet

sendMessage()
receiveMessage()

DaytimeClient1

presentation logic

application logic

Distributed Computing, Liu 28

Daytime Protocol Implementation
Connection-oriented Daytime Server Client:
Sample 2 – using connection-oriented

sockets:
DaytimeServer2.java
DaytimeClient2.java
DaytimeClientHelper2.java
MyStreamSocket.java

Distributed Computing, Liu 29

UML Diagram for stream mode
Daytime Server

DaytimeServer2

ServerSocket

 Socket

sendMessage()
receiveMessage()
receiveMessageAnd
Sender()

MyStreamSocket

presentation and application
 logic

service logic

Distributed Computing, Liu 30

UML Diagram for stream mode
Daytime Client

DaytimeClientHelper2 MyStreamSocket Socket

sendMessage()
receiveMessage()

DaytimeClient2

presentation logic

application logic
service logic

Distributed Computing, Liu 31

Testing a Network Service
Because of its inherent complexity, network software is
notoriously difficult to test.
Use the three-layered software architecture and modularize
each layer on both the client and the server sides.
Use an incremental or stepwise approach in developing each
module. Starting with stubs for each method, compile and test a
module each time after you put in additional details.
Develop the client first. It is sometimes useful to employ an
Echo server (to be introduced in the next section) which is
known to be correct and which uses a compatible IPC
mechanism to test the client independent of the server; doing
so allows you to develop the client independent of the server.
Use diagnostic messages throughout each program to report
the progress of the program during runtime.
Test the client-server suite on one machine before running the
programs on separate machine.

	The Client-Server Model – part 1
	Introduction�
	The Client-Server Paradigm�
	Client-server applications and services�
	Client-server system architecture �vs. �Client-server distributed computing
	Client-server, an overloaded term
	A protocol/service session
	A service session
	The Protocol for a Network Service
	Locating the service�
	The interprocess communications and event synchronization
	Implementation of a network service
	The interprocess communications and event synchronization
	Session IPC examples
	Client-server protocol data representation
	Software Engineering for a Network Service
	Daytime Client-server using Connectionless Datagram Socket
	Daytime Client-server using Connectionless Datagram Socket - continued
	Advantages of separating the layers of logic
	Server-side software�
	Example protocol: daytime
	Daytime Protocol
	Daytime Protocol Implementation
	The getAddress and getPort Methods
	UML Diagram for the Datagram Daytime server
	UML Diagram for the Datagram Daytime Client
	Daytime Protocol Implementation
	UML Diagram for stream mode Daytime Server
	UML Diagram for stream mode Daytime Client
	Testing a Network Service�

