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Thermal excitation of carriers
Calculation of number of charge 
carriers at any temperature T, makes 
use of this diagram

Conduction band
(electrons)

Valance band
(holes)

Notation
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Some textbooks refer to this term as 
the chemical potential, µ, while others 
refer to it as Ef or εf.

Either is fine but note that in statistical 
mechanics Fermi level εf describes µ
specifically at T=0.



Carrier concentration of electrons
We apply Fermi-Dirac statistics to the appropriate set of 1 electron levels
Certain relations hold regardless of impurity and we start with those

Impurity levels produce new bands below/above the conduction 
band/valance bands, but conduction is entirely from e- in conduction band 
and h+ in the valance band so regardless of impurities, total number of 
carriers (electrons in this example) are
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Density of electron states in 
the conduction band

Probability of occupation of 
electron states at temperature T 
(the Fermi function)

Impurities effect n, only 
through µ used in f(E)



Fermi distribution
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Fermi distribution f(E) is the probability of occupation of a state of energy E at a given 
temperature T. The chemical potential, µ, adjusts to give the correct number of 
particles.

At room temperature, Eg >> KBT
So f(E)~1 in valance band and is very small in conduction band, 
so we assume that µ is far from Ec (cf kBT) and thus make the 
following approximation for f(E);

For an electron in the conduction band, E- µ >> kBT

So                        >> 1  and TkE Be /)( µ− TkE BeEf /)()( −≈ µ

Assumption



Carrier concentration of electrons
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NC is the effective number of levels per unit volume in the conduction band if 
we assume they are all concentrated at the bottom of the band, E=Ec



Carrier concentration of holes
The probability that a state in the valance band is occupied by a hole is 1-f(E), 
which can be written
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For µ-E >> kBT, the above equation can be approximated, in a similar 
manner to the electron case, as TkE BeEf /)()(1 µ−≈−
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where,

Nv is the effective number of levels per unit volume in the valance band if we 
assume they are all concentrated at the bottom of the band, E=Ev

So, the number of holes in the valance band is
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Law of Mass Action
We still need to know µ, to infer n(T) or p(T) but the µ dependence 
disappears if we multiply the two densities together
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So if you know one carrier density you know the other

What this says is that at any fixed temperature there is a equilibrium 
between the number of carriers thermally generated and number lost due 
to electron-hole recombination (called annihilation)

Note that np is independent of µ, and so independent of impurity 
concentration. The if more electrons are added via additional dopants, 
the number of holes will be reduced via annihilation, keeping np constant

•

•

•



Intrinsic behaviour
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where ni is the electron concentration for an 
intrinsic semiconductor
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We can now establish the validity of our initial Ec- µ >> kBT assumption 
by determining the intrinsic chemical potential µi



Chemical potential of an intrinsic semiconductor
We have already determined that,
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Since                      is of order 1, µi
will not stray further than kBT
from the centre of the bandgap, 
therefore our initial assumption 
that Ec- µ >> kBT is valid for 
intrinsic semiconductors 
(bandgaps typically 0.5-1 eV)
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Extrinsic semiconductor

Charge neutrality → n + NA
- = p + ND

+

For extrinsic semiconductors the value of µ(T) is different from 1/2Eg and 
we go about determining it by considering the charge neutrality of the 
semiconductor
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Probability that state at 
EC-ED is unoccupied by 
an electron 

Total number 
of donors 

Probability that state 
at EA-EV is occupied 
by an electron 

Total number 
of accepters 
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Solving these equations to get µ(T) is complicated so we just consider 
specific cases



Chemical potential of an extrinsic semiconductor

If both types of carrier are present, e.g. ND > NA , at T=0

Conduction band empty →

ND - NA unionised → ← µ = EC-ED

Acceptor band full →

Valance band full →
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At low T, µ is relatively unchanged and putting µ = EC-ED in our equation 
for n, gives

Comparing with ni the intrinsic electron concentration

ED << Eg so the extrinsic electron concentration is much greater than the 
intrinsic one. From the law of mass action pextrinsic must be << ni so 
electrons are the majority carrier and the material is n-type
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Chemical potential of an extrinsic semiconductor

Raising the temperature , i.e. T>0, results in all the donors being ionised
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n as a function of 1/Tµ as a function of 1/T



If only one type of impurity is present
e.g. electrons, at T=0 and very low T 

Conduction band empty →
← µ

Donor level full →

Valance band full →
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This is similar to the intrinsic case with the donor level taking the place of the valance 
band
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Since there are no holes, electrical neutrality requires n=ND
+ so using 
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Superconductivity lectures: overview
Our previous descriptions of metals and semiconductors have assumed the ‘independent 
electron approximation’ i.e. we have ignored electron-electron interactions. A spectacular 
failure of the independent electron approximation occurs when trying to explain the low 
temperature properties of superconductors.

Most striking features of superconductors are

• A superconductor can behave as if it has no DC resistance. Currents can be established 
which, in the absence of a driving field, do not decay. Record is 2½ years!

• A superconductor can behave as a perfect diamagnet. In an applied magnetic field a 
superconductor carries electrical surface currents. These currents give rise to an
additional magnetic field which precisely cancels the applied magnetic field within the
magnet.

• A superconductor usually behaves as if there were a gap in energy of width 2∆ centred 
about the Fermi energy. So electron can only be extracted from a superconductor if EF-E
exceeds ∆.

Theory of superconductivity: hard! Superconductivity is explained by the BCS model 
which is based on the idea that electrons are bound in pairs, by lattice vibrations. We will 
explore these ideas qualitatively later.
First we look at the experimentally determined properties of superconductors.



Discovery of superconductivity
Electrical resistivity of a typical metal
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• Discovered in 1911 by H Kamerlingh-Onnes,
3 years after his 1st liquefaction of helium

Electrical resistivity of a superconductor

ρ
(arb.scale)

T (arb. scale)Tc

• First measured in mercury.
• Very sharp transition at 4.2 K
• Not related to high purity



Which elements are superconductors?



Which elements are superconductors?

• More than 20 metallic elements are superconductors

• Cu, Au, Ag, Na, K and magnetically ordered metals (Fe, Ni, Co) are not superconductors

• Certain semiconductors are superconducting at high pressures or as thin films

• Highest Tc of an element is 9.3 K for Nb

• There are thousands of alloys and compounds that exhibit superconductivity

• The highest Tc superconductors tend to be poor conductors in the normal state

• Record Tc is currently ~ 125 K



Persistent current of a superconductor

Most sensitive method of measuring a small resistance;

→ Look for the decay of current around a closed superconducting loop

R = Resistance of the loop
L = Self-inductance

Current should decay with time constant τ = L/R

No decay observed!
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This gives an upper value on the value of R

Resistivity ρ < 10-26 Ω-cm for a superconductor

Compare with ρ < 10-8 Ω-cm for Cu

18 orders of magnitude difference!



Limitations of persistent current flow
Persistent currents will flow in a superconductor unless;

1) A sufficiently large magnetic field is applied

2) The current exceeds a certain critical current, Ic, (the Silsbee effect)

The size of Ic, depends on the nature and geometry of specimen
but can be as large as 100 amp for a 1-mm wire

3) An AC electric field above a certain frequency is applied

The transition from dissipationless to normal response occurs
at  ω ~ ∆/ ħ where ∆ is the energy gap

Thermoelectric properties
of superconductors

Superconductors are poor 
thermal conductors
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