Departamento de Informática Universidad de Valladolid Campus de Segovia

ALGORITHM CORRECTNESS PROOFS

P.1. Find the precondition of the following piece of code: $\mathbf{y}:=\mathbf{2} /(\mathbf{2} \mathbf{*} \mathbf{b} \mathbf{c} \mathbf{)} \mathbf{;} \mathbf{x : = 1 - b} \mathbf{y}$ if its postcondition is: $\left\{\left(\mathbf{x}+\mathbf{b}^{*} \mathbf{y}=\mathbf{u}\right) \wedge\left(\mathbf{c}^{*} \mathbf{y}-\mathbf{2}^{*} \mathrm{x}=0\right)\right\}$.
P.2. Let A and B be the initial values of "a" and "b" respectively. Write a piece of code with the following postcondtion: $\{\mathbf{(a = A + B}) \wedge(\mathbf{b}=\mathbf{A}-\mathbf{B})\}$ and prove its correctness.
P.3. Prove that the assertion: $\{\mathbf{s u m}=\mathbf{j} \boldsymbol{*} \mathbf{(j - 1} \mathbf{)} \mathbf{/ 2}\}$ is the invariant of the following piece of code: sum:=sum+j; j:=j+1.
P.4. Prove the partial correctness of the following piece of code:

```
Sum:=0; j:=1;
While (j<>c) do
    Begin
        Sum:=sum+j; j:=j+1
    End;
{sum=c*(c-1)/2}
```

P.5. Prove the partial correctness of the following piece of code:

```
{n\geq0}
i:=1;
while i\leqn do
    begin
        a[i]:=b[i];
            i:=i+1
        end;
{\Lambda ( }\mp@subsup{}{\textrm{i}=1}{\textrm{n}}\mp@subsup{}{}{(}\textrm{a}[\textrm{i}]=\textrm{b}[\textrm{i}])
```

P.6. Let A and B be the initial values of "a" and "b" respectively. Prove the partial correctness of the following code that works out the addition of two integer numbers:

$$
\begin{aligned}
& \begin{array}{r}
\text { while } \mathrm{a} \neq 0 \text { do } \\
\text { begin }
\end{array} \\
& \begin{array}{r}
\mathrm{a}:=\mathrm{a}-1 ; \\
\mathrm{b}:=\mathrm{b}+1
\end{array} \\
& \text { end; } \\
& \{(\mathrm{b}=\mathrm{A}+\mathrm{B}) \wedge(\mathrm{a}=0)\}
\end{aligned}
$$

P.7. Prove the partial correctness of the following code that works out the division of two integer numbers (A and B):

$$
\begin{aligned}
& \mathrm{q}:=0 ; \mathrm{r}:=\mathrm{A} ; \\
& \text { while } \mathrm{r} \geq \mathrm{B} \text { do } \\
& \text { begin } \\
& \\
& \quad \begin{array}{l}
\mathrm{r}:=\mathrm{r}-\mathrm{B} ; \\
\mathrm{q}:=\mathrm{q}+1
\end{array} \\
& \text { end; }
\end{aligned}
$$

P.8. Let A and B be the initial values of "a" and "b" respectively. Prove the partial correctness of the following code that works out the Maximum Common Divisor (MCD) of two integer numbers:

```
while a\not=b do
    if a>b then
        a:=a-b
    else
        b:=b-a
```

For proving the partial correctness, take into account the following features of the MCD:

- if $\mathrm{a}>\mathrm{b}$ then $\operatorname{MCD}(\mathrm{a}, \mathrm{b})=\mathrm{MCD}(\mathrm{a}-\mathrm{b}, \mathrm{b})$
- $\operatorname{MCD}(\mathrm{a}, \mathrm{b})=\mathrm{MCD}(\mathrm{b}, \mathrm{a})$
- $\quad \operatorname{MCD}(a, a)=a$
P.9. Prove the partial correctness of the following code that works out A^{N}, where A and N are integer numbers:

```
\(\mathrm{q}:=1 ; \mathrm{z}:=\mathrm{A} ; \mathrm{w}:=\mathrm{N}\);
while \(\mathrm{w}>0\) do
        begin
        \(\mathrm{w}:=\mathrm{w}-1\);
        \(\mathrm{q}:=\mathrm{q}^{*} \mathrm{z}\)
    end;
\(\left\{\left(\mathrm{q}=\mathrm{A}^{\mathrm{N}}\right) \wedge(\mathrm{w}=0)\right\}\)
```

P.10. Prove the partial correctness of the following code that works out $\Sigma_{i=1}{ }^{\mathrm{n}} \mathrm{i}$!.

```
i:=1; sum:=0; f:=1;
while \(i<>n+1\) do
    begin
        sum:=sum+f;
        \(\mathrm{i}:=\mathrm{i}+1\);
        \(\mathrm{f}:=\mathrm{f} * \mathrm{i}\)
```

