
Departamento de Informática
Universidad de Valladolid

Campus de Segovia

TOPIC 1:
RECURSION

INDEX

•Direct recursion. Definition
•How direct recursion works
•Some examples
•Mutual recursion
•Recursion vs iteration

DIRECT RECURSION. DEFINITION

• It is a mathematical way of defining a problem in terms of a
smaller version of itself.

• As a programming technic it involves procedures or function
calling itself and implies a different way of looking at the
repetitive actions.

• However this definition is not enough to understand it depthly
since some aspects related to how it works need a more
detailed description.
– How can we define the solution in terms of a smaller solution?
– How is the size of the solution being disminished at each recursive

call?
– How does the recursive algorithm detect that the final solution is

reached?

HOW DIRECT RECURSION WORKS.
THE FACTORIAL OF AN POSITIVE INTEGER

• The factorial of an integer n! may be defined
as:

n! = n (n-1) (n-2)........1

• According to that, (n-1)! is defined as
(n-1)! = (n-1) (n-2).......1

• Therefore, a recursive definition of that
function may be:

n! = n (n-1)! si n>0
0! = 1 si n=0

HOW DIRECT RECURSION WORKS.
THE FACTORIAL FUNCTION

Fac(4)=4*Fac(3)
Fac(4)=4*(3*Fac(2))
Fac(4)=4*(3*(2*Fac(1)))
Fac(4)=4*(3*(2*(1*Fac(0))))

Fac(4)=4*(3*(2*(1*1)))
Fac(4)=4*(3*(2*1))
Fac(4)=4*(3*2)
Fac(4)=4*6=24

PASCAL IMPLEMENTATION

FUNCTION Fac(number:integer):integer;
{Prec. number≥0}
Begin

if number = 0 then
Fac := 1

else
Fac := number * Fac(number-1)

End; {Fac}
• The call is within the function body.

HOW DIRECT RECURSION WORKS.

Therefore a recursive algorithm need:
– A General case that provides a definition of the problem in

terms of itself.

– A base case defined as which that stop the recursion
process when the final solution is reached.

– Any recursive algorithm must have, at least ,one base case.

HOW DIRECT RECURSION WORKS

• Running a recursive program:
– Once a recursive call is invoked the current values of the

local variables and formal parameters are stored in a work
space called activation record.

– Then the activation record is stored and a new smaller
version of the recursive program is active. This process is
repeated until a case base is reached. Then no more
recursive calls are invoked and the final solution is built
using the partial solution. The order of activation of these
ones follow the Last-in First–out rule (LiFo).

– The structure that supports such rule is an stack called run
time stack.

BEGIN

Recursive call

END.

BEGIN

Recursive call

END.

BEGIN

(Base case)

END.Activation Record 1

Activation Record 2

Activation Record 3

Activation Record n

Activation Record 1

Activation Record 2

Activation Record 3

Activation Record n

Pushed the activation
record onto the stack

Popped the activation
record from the stack

HOW DIRECT RECURSION WORKS

Fac(3)...
If n=0 then

Fac:=1
Else

Fac=3*Fac(2)

6
Fac(2)...

If n=0 then
Fac:=1

Else
Fac=2*Fac(1)

2
Fac(1)...

If n=0 then
Fac:=1

Else
Fac=1*Fac(0)

1
Fac(0)...

If n=0 then
Fac:=1

1
Fac=3*Fac(2)
Fac=2*Fac(1)
Fac=1*Fac(0)

Fac=3*Fac(2)
Fac=2*Fac(1)
Fac=1*Fac(0)

HOW DIRECT RECURSION WORKS.
THE FACTORIAL FUNCTION

HOW DIRECT RECURSION WORKS.
THE FACTORIAL FUNCTION

Pushed onto the stack

Fac(4)=4*Fac(3)
Fac(3)=4*Fac(2)
Fac(2)=4*Fac(1)

Fac(1)=4*Fac(0)
Fac(4)=4*Fac(3)
Fac(4)=4*(3*Fac(2))
Fac(4)=4*(3*(2*Fac(1)))
Fac(4)=4*(3*(2*(1*Fac(0))))

Fac(4)=4*(3*(2*(1*1)))
Fac(4)=4*(3*(2*1))
Fac(4)=4*(3*2)
Fac(4)=4*6=24

Popped from the stack

Fac(4)=4*Fac(3)
Fac(3)=4*Fac(2)
Fac(2)=4*Fac(1)

Fac(1)=4*Fac(0)

THE FIBONACCI FUNCTION
• Fibonacci function definition:

– f(n)= 1 si n=1,0
– f(n)= f(n-1)+f(n-2) si n>1

• PascaL implentation:

FUNCTION fib(number:integer):integer;
{Prec. number≥0}
Begin

if (number=0) or (number=1) then
fib:=1

else
fib:=fib(number-1)+fib(number-2)

End; {fibonacci}

RUN-TIME DEFINITION OF NEW BASE
CASES

• Sometimes a recursive call with the same arguments is
repeated as the recursive program is running.

• Función de Fibonacci: Fib(4)

• In order to improve the efficiency of this algorithm a run-time
table can be implemented providing a memory space where a
new recursive call can be stored as a base case.

4
3 2

2 1 1 0
1 0

RUN-TIME TABLE IMPLEMENTATION

type
tdomain =0..20
tregister= record

defined: boolean;
result: integer

End;
tTabla=array [tdomain] of tregister;
var
tablafib:tTabla; i:tdomain;
Function Fib(n: tdomain; var

t:tTabla):integer;
Begin

if not t[n].defined then Begin
t[n].defined:=true;
t[n].result:=Fib(n-1,t)+Fib(n-2,t);

End {if};

Fib:=t[n].result
End; {Fibonacci}

Begin
tablafib[0].defined:=true;

tablafib[0].result:=1;
tablafib[1].defined:=true;

tablafib[1].result:=1;
for i:=2 to 20 do

tablafib[i].defined:=false;
.......

THE HANOI TOWERS PROBLEM

– Move all discs from tower A to B, but moving one
by one and only considering allowed to stack a
smaller disc over a greater one.

A B C

2
1

A
ini

B
fin

C
aux

2 1

2 1

2
1

Move one disc
from A to C

ini-aux

Move one disc
From A to B

ini-fin

Move one disc
From C to B

aux-fin

THE THREE DISC HANOI TOWERS
PROBLEM

3
2
1

A
ini

B
fin

C
aux

Procedure arguments:
(n, ini, fin, aux)

Move the two upper
discs from A to B

3
2

1

3 21

3 2
1

A
ini

B
fin

C
aux

Ini-fin

Ini-aux

fin-aux

(n-1,ini, aux, fin)

Move the third disc from A to B

3 2
1

A
ini

B
fin

C
aux

Ini-fin

3
2

1

3
2
1

3 21

A
ini

B
fin

C
aux

aux-ini

aux-fin

ini-fin

Move two
discs from C to B

(n-1,aux, fin, ini)

Algorithm to move three discs from A to B

1. Move two discs from A to C:
a. Move one disc from A to B
b. Move one disc from A to C
c. Move one disc from B to C

2. Move one disc from A to B

3. Move two discs from C to B:
a. Move one disc from C to A
b. Move one disc from C to B
c. Move one disc from A to B

MOVING “N” DISCS FROM A TO B.
RECURSIVE DEFINITION:

1. Move n-1 disc from A to C

2. Move one disc from A to B

3. Move n-1 discs from C to B

Base case if n=0

PASCAL IMPLEMENTATION

PROCEDURE Movingdisc(n:integer; ini,fin,aux:char);
{Prec. n≥0}

Begin
if n>0 then begin

Movingdisc(n-1,ini,aux,fin);
writeln(‘move disc’, n:3,’from’, ini,’to’, fin);
Movingdisc(n-1,aux,fin,ini)

end {if}
End; {Movingdisc}

A SEQUENTIAL DESCRIPTION OF THE
ALGORITHM FOR N=3

3 A B C

write 3 A-B2 A C B

1 A B C

0 write 1 A-B

write 2 A-C

0

1 B C A

0 write 1 B-C

0

2 C B A

1 C A B

0
write 1 C-A

write 2 C-B

0

1 A B C

0 write 1 A-B

0

A RUN-TIME STACK DESCRIPTION

3 A B C
2 A C B
1 A B C

3 A B C
2 A C B

1 A B C

3 A B C

2 A C B

3 A B C
1 B C A

1 A B C

2 C B A 1 A B C

3 A B C

1 B C A 3 A B C

2 C B A
1 C A B

2 C B A

1 C A B

MUTUAL RECURSION

• Mutual recursion is a form of recursion where two
mathematical or computational functions are defined in terms of
each other.

• In order to check and compile a routine call, a compiler must
know the type of the routine, the number of parameters and so
on. Since routines must be defined in some order at least one
routine must be compiled before its definition is seen.

• Pascal programming language uses separate forward
definitions of routine headers to give sufficient information to
compile the recursive call and body definitions to contain these
ones.

PASCAL IMPLEMENTATION OF THE
MUTUAL RECURSION

PROCEDURE Second (arguments); forward;
PROCEDURE First (arguments);
........
Begin {First}
.........
Second(arguments)
.........
End; {First}
PROCEDURE Second (arguments);
........
Begin {Second}
.........
First(arguments)
.........
End; {Second}

MUTUAL RECURSION.
CHECKING THE PARITY OF AN INTEGER

• Implement a pascal program to check the parity of a positive integer
using mutual recursion.

• If parity is the quality of being either odd or even, the algorithm can
be implemented defining two procedure mutually dependent:

Function even(n:integer):boolean;
Function odd(n:integer):boolean;

Program parity;
uses

crt;
Var

n:integer;
PROCEDURE odd(n:integer); forward
PROCEDURE even(n:integer);

Begin
if n=0 then

writeln(‘the number is even’)
else

odd(n-1)
End;{even}

PROCEDURE odd(n:integer);
Begin

if n=0 then
writeln(‘the number is odd’)

else
even(n-1)

End;{odd}

Begin {parity}
clrscr;
writeln(‘enter a positive integer number’);
readln(number);
even(number);
readln {pause}

End; {parity}

RECURSION vs ITERATION

• Since a recursive program involves
repetition then it may be implemented
as well by means of an iteration and
viceverse.

• But, how to decide which of the two
have to be used? In this case is
necessary to take into account some
aspect such as eficiency and legibility.

	TOPIC 1:RECURSION
	INDEX
	DIRECT RECURSION. DEFINITION
	HOW DIRECT RECURSION WORKS. THE FACTORIAL OF AN POSITIVE INTEGER
	HOW DIRECT RECURSION WORKS. THE FACTORIAL FUNCTION
	PASCAL IMPLEMENTATION
	HOW DIRECT RECURSION WORKS.
	HOW DIRECT RECURSION WORKS
	HOW DIRECT RECURSION WORKS
	HOW DIRECT RECURSION WORKS. THE FACTORIAL FUNCTION
	HOW DIRECT RECURSION WORKS. THE FACTORIAL FUNCTION
	THE FIBONACCI FUNCTION
	RUN-TIME DEFINITION OF NEW BASE CASES
	RUN-TIME TABLE IMPLEMENTATION
	THE HANOI TOWERS PROBLEM
	THE THREE DISC HANOI TOWERS PROBLEM
	Algorithm to move three discs from A to B
	MOVING “N” DISCS FROM A TO B. RECURSIVE DEFINITION:
	PASCAL IMPLEMENTATION
	A SEQUENTIAL DESCRIPTION OF THE ALGORITHM FOR N=3
	A RUN-TIME STACK DESCRIPTION
	MUTUAL RECURSION
	PASCAL IMPLEMENTATION OF THE MUTUAL RECURSION
	MUTUAL RECURSION. CHECKING THE PARITY OF AN INTEGER
	RECURSION vs ITERATION

