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POINTERS AND DYNAMIC MEMORY 
ALLOCATION

•Introduction
•Pointers.  declarations in Pascal
•Dynamic memory allocation.
•Basic dynamic variables operations
•Basic pointer operations
•The NIL value
•Some non recursive applications using pointers
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INTRODUCTION 

• All Data structures that have been presented until
now can be considered as static since its size and
existence are determined at compile time. It means:

– The memory space allocation is reserved in advance and not
change during program execution.

– It allows the compiler to check the data types at compile 
time.

• Disadvantages:

– Since the size of the static data structure doesn´t change
during program execution then they aren´t suitable to
optimize the spatial complexity.
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INTRODUCTION 

• To allocate space dynamically in Pascal  is
necessary to declare a pointer-type variable.

• Advantages:
– Flexibility with respect to the data structures that

can be implemented (list, trees, graphs,…)

• Disadvantages
– Alliasing: As a collateral effect when the same

memory space is allocated to two variables (two
differents identifiers)

– Space Memory management: Since is necessary
to know at run-time how many memory is
available and how many can be recovered if it is
not used at this moment (run out of problems).
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INTRODUCTION 

• A pointer in pascal is a type of data that can only
contain the addresses in memory of stored data 
(typed pointers).

• The allocated memory space is represented by a 
dynamic variable whose address in memory is
contained by the pointer.

DATA
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Address Memory

pointer

Dynamic variable
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GRAPHICAL REPRESENTATION

DATO

Dynamic variablePointer
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HOW TO DECLARE A POINTER IN 
PASCAL

• To use a pointer in Pascal :

– First, it is necessary to declare, in the
TYPE section, the pointer type, it
means, the data type that will be pointed
by the pointer. 

– And second, in the VAR section, declare 
the pointer-type variables. 
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SYNTACTIC DIAGRAM

TYPE^

EXAMPLE I:

TYPE
tpchar=^char;

VAR
pchar:=tpchar;

EXAMPLE II:

TYPE
tpNode=^tNode;
tNode=record

info:.......
Sig:tpNode

end;
VAR

pNode:=tpNode;
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Some aspect to take into account

• The pointer size is independent of the
pointer type.

• The dynamic variable no use memory
space at compile-time but just when
they are created at run-time.
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CREATION AND DELETION OF  
DYNAMIC VARIABLES

• Pascal provide the next procedures to
create or delete dynamic variables:

– New(pointer-identifier)

– Dispose(pointer-identifier)
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CREATING A DYNAMIC VARIABLE IN 
PASCAL

• New(pointer-identifier)

– A memory space whose size is related to the pointer type is used. 

– Then, its address is assigned to the pointer.

– The new variable is denoted as:
pointer-identifier^

• Graphically:

???????

Pointer-identifier^

Pointer-identifier

11



DELETION OF A DYNAMIC VARIABLE 
IN PASCAL

• Dispose(pointer-identifier)

– Release dynamically allocated space.

– What happens when Dispose procedure is called? It depends on
the compiler version. 

• In some cases the pointer is set to NIL value,
• In others is left unchanged with what looks like a valid address stored in 

it.
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BASIC DYNAMIC VARIABLE 
OPERATIONS

• The allowed operations are
– allocation
– read
– write
– And anyone that is related to the pointer type.
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EXAMPLE I
...........
TYPE

tpchar=^char;
VAR

pchar:tpchar;

BEGIN
.........
New(pchar);
Readln(pchar^); {for instance ‘B’}
pchar^:=Pred(pchar^);
Writeln(pchar^);
..........
END.

pchar

‘A’

pchar^
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EXAMPLE II...........
TYPE

tpnum=^integer;
VAR

pnum1, pnum2:tpnum;
BEGIN
.........
New(pnum1); New(pnum2);
pnum1^:=2; pnum2^:=4;
pnum2^:=pnum1^+pnum2^;
pnum1^:=pnum2^ DIV 2;
..........
END.

3

pnum1

6

pnum2
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EXAMPLE III...........
TYPE

tVector10=array[1..10] of real;
tpnum=^integer;
tpvector=^tvector10;

VAR
pnum1, pnum2: tpnum;
pvect: tpvector10;
i: integer;

BEGIN
.........

New(pnum1); New(pnum2); New(pvect);
pnum1^:=45; pnum2^:=30;
pvect^[1]=2;
for i:=2 to 10 do

pvect^[i]:=pvect^[i-1] * 2;
..........
END. 16



EXAMPLE III
• Tracking the allocations

3

Apnum1

6

Apnum2

Apvect

2,0 4,0 1024,0
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BASIC POINTERS OPERATIONS

• The allowed operations are:

– Comparison: the addresses contained by the
pointers are compared.

pnum1=pnum2

– Allocation: the address of the pointer to the left of
the expression is allocated to the right one.

pnum1:=pnum2
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POINTER COMPARISON

3

pnum1

3

pnum2

• pnum1=pnum2

• The last comparison between pointers becomes
“false” since each one are pointing to different 
addresses.
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POINTER ALLOCATION

3

pnum1

5

pnum2

• pnum1:=pnum2

3

pnum1

5

pnum2
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ALLOCATION COLLATERAL EFFECTS

3

pnum1

5

pnum2

• Alliasing and Space Memory management: 
– Any change on pnum1 automatically affect to

pnum2.

21



TYPE COHERENCE BETWEEN 
POINTERS

• Valid operations

– pnum1:=pnum1
– pnum1=pnum2
– pvector1:=pvector2

• Not valid Operations:

– pnum1:=pchar;
– pnum1=pvector;
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THE NIL VALUE

• A constant in Pascal that can be 
assigned to a pointer type variable to
indicate that the pointer point nothing.

• Graphic representation:
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NON RECURSIVE APPLICATIONS 
USING POINTERS

• One step composed data allocation.
• Composed data as a function output.
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ONE STEP COMPOSED DATA 
ALLOCATION

• To manage the allocation operation
when large size data structure are 
involved. 

– Sorting large size vector.
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SORTING LARGE SIZE VECTOR.

TYPE
tpFich=^tFich;
tFich=record

name:string;
address:string;
..............

End; {tFich}
tpstudentlist=array[1..100] of tpFich;
.............

• The sorting and searching operations are made using the
pointers. 
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COMPOSED DATA AS A FUNCTION OUTPUT

• The main idea is to achieve that a function
in Pascal returns not only simple data but
also composed data structures.

• The solution is to use a pointer instead of the
composed data,  since a pointer is a simple 
data.
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COMPOSED DATA AS A FUNCTION OUTPUT.

• Program that work out the cartesian coordinates of a point in 2-D, from
its polar coordinates.

........
TYPE

tPoint=record
x,y:real;

end; {tPunto}
tpPoint=^tPoint;

VAR
ang,dist:real;
orig:tPoint;
..........

FUNCTION Cartesian_coordinates(orig:tPoint;ang,dist:real):tpPoint
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COMPOSED DATA AS A FUNCTION OUTPUT

FUNCTION Catersian_coordinates(orig:tPoint;ang,dist:real):tpPoint
VAR

pPoint:tpPoint;
Begin

New(pPoint);
pPoint^.x:=orig.x+dist*cos(ang);
pPoint^.y:=orig.y+dist*sen(ang):
Cartesian_coordinates:=pPoint;

End; {Destino}
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