
Departamento de Informática
Universidad de Valladolid

Campus de Segovia

CHAPTER 2:
POINTERS AND DYNAMIC

MEMORY ALLOCATION

1

POINTERS AND DYNAMIC MEMORY
ALLOCATION

•Introduction
•Pointers. declarations in Pascal
•Dynamic memory allocation.
•Basic dynamic variables operations
•Basic pointer operations
•The NIL value
•Some non recursive applications using pointers

2

INTRODUCTION

• All Data structures that have been presented until
now can be considered as static since its size and
existence are determined at compile time. It means:

– The memory space allocation is reserved in advance and not
change during program execution.

– It allows the compiler to check the data types at compile
time.

• Disadvantages:

– Since the size of the static data structure doesn´t change
during program execution then they aren´t suitable to
optimize the spatial complexity.

3

INTRODUCTION

• To allocate space dynamically in Pascal is
necessary to declare a pointer-type variable.

• Advantages:
– Flexibility with respect to the data structures that

can be implemented (list, trees, graphs,…)

• Disadvantages
– Alliasing: As a collateral effect when the same

memory space is allocated to two variables (two
differents identifiers)

– Space Memory management: Since is necessary
to know at run-time how many memory is
available and how many can be recovered if it is
not used at this moment (run out of problems).

4

INTRODUCTION

• A pointer in pascal is a type of data that can only
contain the addresses in memory of stored data
(typed pointers).

• The allocated memory space is represented by a
dynamic variable whose address in memory is
contained by the pointer.

DATA

1365 20560123 4567

1365 2056

Address Memory

pointer

Dynamic variable

5

GRAPHICAL REPRESENTATION

DATO

Dynamic variablePointer

6

HOW TO DECLARE A POINTER IN
PASCAL

• To use a pointer in Pascal :

– First, it is necessary to declare, in the
TYPE section, the pointer type, it
means, the data type that will be pointed
by the pointer.

– And second, in the VAR section, declare
the pointer-type variables.

7

SYNTACTIC DIAGRAM

TYPE^

EXAMPLE I:

TYPE
tpchar=^char;

VAR
pchar:=tpchar;

EXAMPLE II:

TYPE
tpNode=^tNode;
tNode=record

info:.......
Sig:tpNode

end;
VAR

pNode:=tpNode;

8

Some aspect to take into account

• The pointer size is independent of the
pointer type.

• The dynamic variable no use memory
space at compile-time but just when
they are created at run-time.

9

CREATION AND DELETION OF
DYNAMIC VARIABLES

• Pascal provide the next procedures to
create or delete dynamic variables:

– New(pointer-identifier)

– Dispose(pointer-identifier)

10

CREATING A DYNAMIC VARIABLE IN
PASCAL

• New(pointer-identifier)

– A memory space whose size is related to the pointer type is used.

– Then, its address is assigned to the pointer.

– The new variable is denoted as:
pointer-identifier^

• Graphically:

???????

Pointer-identifier^

Pointer-identifier

11

DELETION OF A DYNAMIC VARIABLE
IN PASCAL

• Dispose(pointer-identifier)

– Release dynamically allocated space.

– What happens when Dispose procedure is called? It depends on
the compiler version.

• In some cases the pointer is set to NIL value,
• In others is left unchanged with what looks like a valid address stored in

it.

12

BASIC DYNAMIC VARIABLE
OPERATIONS

• The allowed operations are
– allocation
– read
– write
– And anyone that is related to the pointer type.

13

EXAMPLE I
...........
TYPE

tpchar=^char;
VAR

pchar:tpchar;

BEGIN
.........
New(pchar);
Readln(pchar^); {for instance ‘B’}
pchar^:=Pred(pchar^);
Writeln(pchar^);
..........
END.

pchar

‘A’

pchar^

14

EXAMPLE II...........
TYPE

tpnum=^integer;
VAR

pnum1, pnum2:tpnum;
BEGIN
.........
New(pnum1); New(pnum2);
pnum1^:=2; pnum2^:=4;
pnum2^:=pnum1^+pnum2^;
pnum1^:=pnum2^ DIV 2;
..........
END.

3

pnum1

6

pnum2

15

EXAMPLE III...........
TYPE

tVector10=array[1..10] of real;
tpnum=^integer;
tpvector=^tvector10;

VAR
pnum1, pnum2: tpnum;
pvect: tpvector10;
i: integer;

BEGIN
.........

New(pnum1); New(pnum2); New(pvect);
pnum1^:=45; pnum2^:=30;
pvect^[1]=2;
for i:=2 to 10 do

pvect^[i]:=pvect^[i-1] * 2;
..........
END. 16

EXAMPLE III
• Tracking the allocations

3

Apnum1

6

Apnum2

Apvect

2,0 4,0 1024,0

17

BASIC POINTERS OPERATIONS

• The allowed operations are:

– Comparison: the addresses contained by the
pointers are compared.

pnum1=pnum2

– Allocation: the address of the pointer to the left of
the expression is allocated to the right one.

pnum1:=pnum2

18

POINTER COMPARISON

3

pnum1

3

pnum2

• pnum1=pnum2

• The last comparison between pointers becomes
“false” since each one are pointing to different
addresses.

19

POINTER ALLOCATION

3

pnum1

5

pnum2

• pnum1:=pnum2

3

pnum1

5

pnum2

20

ALLOCATION COLLATERAL EFFECTS

3

pnum1

5

pnum2

• Alliasing and Space Memory management:
– Any change on pnum1 automatically affect to

pnum2.

21

TYPE COHERENCE BETWEEN
POINTERS

• Valid operations

– pnum1:=pnum1
– pnum1=pnum2
– pvector1:=pvector2

• Not valid Operations:

– pnum1:=pchar;
– pnum1=pvector;

22

THE NIL VALUE

• A constant in Pascal that can be
assigned to a pointer type variable to
indicate that the pointer point nothing.

• Graphic representation:

23

NON RECURSIVE APPLICATIONS
USING POINTERS

• One step composed data allocation.
• Composed data as a function output.

24

ONE STEP COMPOSED DATA
ALLOCATION

• To manage the allocation operation
when large size data structure are
involved.

– Sorting large size vector.

25

SORTING LARGE SIZE VECTOR.

TYPE
tpFich=^tFich;
tFich=record

name:string;
address:string;
..............

End; {tFich}
tpstudentlist=array[1..100] of tpFich;
.............

• The sorting and searching operations are made using the
pointers.

26

COMPOSED DATA AS A FUNCTION OUTPUT

• The main idea is to achieve that a function
in Pascal returns not only simple data but
also composed data structures.

• The solution is to use a pointer instead of the
composed data, since a pointer is a simple
data.

27

COMPOSED DATA AS A FUNCTION OUTPUT.

• Program that work out the cartesian coordinates of a point in 2-D, from
its polar coordinates.

........
TYPE

tPoint=record
x,y:real;

end; {tPunto}
tpPoint=^tPoint;

VAR
ang,dist:real;
orig:tPoint;
..........

FUNCTION Cartesian_coordinates(orig:tPoint;ang,dist:real):tpPoint

28

COMPOSED DATA AS A FUNCTION OUTPUT

FUNCTION Catersian_coordinates(orig:tPoint;ang,dist:real):tpPoint
VAR

pPoint:tpPoint;
Begin

New(pPoint);
pPoint^.x:=orig.x+dist*cos(ang);
pPoint^.y:=orig.y+dist*sen(ang):
Cartesian_coordinates:=pPoint;

End; {Destino}

29

	CHAPTER 2:POINTERS AND DYNAMIC MEMORY ALLOCATION
	POINTERS AND DYNAMIC MEMORY ALLOCATION
	INTRODUCTION
	INTRODUCTION
	INTRODUCTION
	GRAPHICAL REPRESENTATION
	HOW TO DECLARE A POINTER IN PASCAL
	SYNTACTIC DIAGRAM
	Some aspect to take into account
	CREATION AND DELETION OF DYNAMIC VARIABLES
	CREATING A DYNAMIC VARIABLE IN PASCAL
	DELETION OF A DYNAMIC VARIABLE IN PASCAL
	BASIC DYNAMIC VARIABLE OPERATIONS
	EXAMPLE I
	EXAMPLE II
	EXAMPLE III
	EXAMPLE III
	BASIC POINTERS OPERATIONS
	POINTER COMPARISON
	POINTER ALLOCATION
	ALLOCATION COLLATERAL EFFECTS
	TYPE COHERENCE BETWEEN POINTERS
	THE NIL VALUE
	NON RECURSIVE APPLICATIONS USING POINTERS
	ONE STEP COMPOSED DATA ALLOCATION
	SORTING LARGE SIZE VECTOR.
	COMPOSED DATA AS A FUNCTION OUTPUT
	COMPOSED DATA AS A FUNCTION OUTPUT.
	COMPOSED DATA AS A FUNCTION OUTPUT

