
Departamento de Informática
Universidad de Valladolid

Campus de Segovia

TOPIC 4:
ABSTRACT DATA TYPES

(ADTs)

ABSTRACT DATA TYPES (ADTs)

• Introduction
• A counterexample:

– Euclide´s algorithm implementation without using ADTs.

• How to construct an ADT
• The same Euclide´s algorithm implementation using an ADT.

INTRODUCTION

• In computing, an abstract data type (ADT) is a
specification of a set of data and their valid set of
operations.

• In this sense abstract means that it is independent of the
implementation.

• The definition can be mathematical, or programmed as
an interface.

• If it is programmed then the interface provides a
constructor, which returns an object, and several
operations, which are functions accepting this object as an
argument.

INTRODUCTION

• Users of an ADT are concerned with the interface, but not
the implementation.

• The strength of an ADT is that the implementation is
hidden from the user. Only the interface is published.

• This means that the ADT can be implemented in various
ways, but as long as user programs are unaffected. (This
supports the principle of information hiding, or protecting
the program from design decisions that are subject to
change.)

ADT vs IMPLEMENTATION

• There is a distinction, although sometimes subtle,
between the abstract data type and the data structure
used in its implementation.

• For example, a List ADT can be represented using an
array-based implementation or a linked-list
implementation.

• A List is an abstract data type with well-defined
operations (add element, remove element, etc.) while a
linked-list is a pointer-based data structure that can be
used to create a representation of a List.

• The linked-list implementation is so commonly used to
represent a List ADT, so that the terms are interchanged
in common use.

A COUNTEREXAMPLE
• The storage data structure “SET” in Pascal presents

a strong restriction with respect to the maximum
number of elements that can be contained (the SET
type in Turbo Pascal 7.0 can contain only 256
elements).

• The proposal involves to implement the
Eratosthenes´s sieve Algorithm (find all the primes
between 2 and N, removing the non-primes, where
“N” may be any integer), using a new data “set”
structure defined by the user, that overcomes the
previous limitation.

• In this first approach the ADT scheme will not be
considered.

CHOSING THE NEW DATA SET
REPRESENTATION

• Eratosthenes’s original algorithm was based on the
idea of removing non-primes from a list of integers.

• Then, in order to represent the new Data Set, a
growing ordered Linked list will be used.

ERATOSTHENES´S SIEVE ALGORITHM
• To find all the primes between 2 and n, Eratosthenes

would proceed as follows:
– First design step:

Read N
Generate the initial list containing the N-2 elements {2,...,N}
Remove the non-prime numbers from list.
Show the remaining numbers.

– Generating the initial list:
Create an empty list
Add from 2 to N numbers to list.

– Remove the non-prime numbers from list.
Given e ∈ (2, sqrt(N)), Remove from list all multiple of “e”.

– Remove from list all multiple of “e”.
coeficient:=2

repeat
Remove multiples of “e” from list as long as (e*coefficient) is
less or equal than “N”
coefficient:=coefficient+1

Until (e>= sqrt(N))

PROGRAM Eratosthenessieve;
{Prec. Input must be an integer equal or greater than 2}
TYPE

tset=^tNode;
tNode=record

elem:integer;
next:tset

end; {tNode}
VAR

N,e,coeff:integer;
initialset,aux,pprime,remaux:tset;

BEGIN
writeln(‘maximum ordinal number of the set: ‘); {Read N}
readln(N);
new(initialset);
aux:=initialset;
aux^.elem:=2;
for e:=3 to N do begin

new(aux^.next);
aux:=aux^.next; {linking the nodes of the list}
aux^.elem:=e

end; {for}
aux^.next:=nil {allocating the NIL value to the last node}
{Removing non-prime numbers from initialset}
{Pprime is a pointer that points there where initialset is pointing}
Pprime:=initialset

repeat
e:=Pprime^.elem;
coeff:=2;
aux:=Pprime;
while (e*coeff≤N) and (aux^.next<>nil) do begin

if (aux^.next^.elem)<(coeff*e) then
aux:=aux^.next

else if aux^.next^.elem=coeff*e then begin
remaux:=aux^.next;
aux^.next:=aux^.next^.next;

Dispose(remaux);
coeff:=coeff+1

end; {else if}
else if aux^.next^.elem>coeff*e then

coeff:=coeff+1
end {while}
Pprime:=Pprime^.next

until (e≥sqtr(N)) or (Pprime=nil);

{Show the remaining numbers on the screen}
aux:=initialset;
while (aux<>nil) do begin

write(aux^.elem:4);
aux:=aux^.next

end; {while}
end. {Eratosthenessieve}

SOME CONSIDERATIONS ABOUT THE
PREVIOUS IMPLEMENTATION

• The features of the algorithm and those ones related
to data structure are mixed. That means:

– The generated code is complex and difficult to read.

– There is not any possibility to reuse the implemented data
structure.

• All these problems can be overcome by using ADTs.

ADT DEFINITION

• An abstract data type may be defined as an
abstract representation model of data consiting of
three components:

1. A set of abstract objects.

2. A set of sintactic decriptions of operations which
arguments are the abstract objects previously
mentioned.

3. A complete semantic decription for each operation.

DEVELOPING AN ADT

• Identification of possible abstract objects.

• Identification of the basic operation related to
these abstract objects.

• Operation specification.

• Choosing a good operation implementation.

ADT SPECIFICATION

• The appropriate language for specifying an abstracta data
type is the mathematical one.

• The syntactic definition will be expressed in terms of the
operation headers (identifier and argument description),

• whereas the semantic one describes the meaning of these
operations using mathematical expressions.

ADT OPERATION CATEGORIES

• Operations on an ADT fall into four categories.
These categories are:

– Constructors - create an instance of the ADT
– Interrogators - return information about an instance

without modifying the instance
– Manipulators - modify the properties of an instance

without returning any information about it
– Destructors - de-allocate storage space, close any

open documents, and release system resources

SUPPORTING ABSTRACT DATA TYPE
IMPLEMENTATION

• In order to implement an abstract data type is neccessary
a framework that supports encapsulation mechanism and
therefore information hiding:

– Encapsulation involves modullarity and therefore reusability
– Information hiding involves protecting the interface with respect to

changes if the design decision is changed.

• Turbo Pascal 7.0 is provided of such mechanism by
means of the UNITs, in order to satisfy as much as
possible both of them.

THE “SET” ABSTRACT DATA TYPE

TYPE
tSet=Abstract

{The abstract object of this ADT is a set of integers}

• The related operations are:

– Createset(iset): Creates an empty set of integers.

– Addelem(elem,iset): adds “elem” (an integer) to iset.

– Removeelem(elem,iset): Removes “elem” (an integer) to
iset.

THE “SET” ABSTRACT DATA TYPE

– Belong(elem,iset): Determines whether “elem” belongs to
iset or not.

– showset(iset): Shows all the elements of iset on the screen.

– Emptyset(iset): Determines whether iset is empty or not.

OPERATION SPECIFICATION

PROCEDURE Createset(var iset: tset);
{Returns iset:=Ø}
PROCEDURE Addelem (elem:integer; var iset:tset);
{Returns iset:=iset ∪ [elem]}
PROCEDURE Removeelem(elem:integer; var iset:tset);
{Returns iset:=iset / [elem]}
FUNCTION Belong(elem:integer; iset:tset):boolean;
{Returns True if (elem∈iset), otherwise False}
PROCEDURE showset(iset:tset);
{Shows all the elements of iset on the screen}
FUNCTION Emptyset(iset:tset):boolean;
{Returns True if Conj:=∅, otherwise False}

THE “SET” ABSTRACT DATA TYPE
IMPLEMENTATION

UNIT IntegerSet;
{Implementation by means of an ascending ordered linked list without
repetition}

INTERFACE
TYPE

tElem:integer;
tset=^tListNode;
tListNode=record

info:tElem;
sig:tset;

end; {tListNode}

THE “SET” ABSTRACT DATA TYPE
IMPLEMENTATION

PROCEDURE Createset(var iset: tset);
{Efecto. iset:=Ø}
PROCEDURE Addelem(elem:integer; var iset:tset);
{Efecto. iset:=iset ∪ [elem]}
PROCEDURE Removeelem(elem:integer; var iset:tset);
{Efecto. iset:=iset / [elem]}
FUNCTION Belong(elem:integer; iset:tset):boolean;
{Dev. True if (elem∈iset) otherwise False}
PROCEDURE showset(iset:tset);
{Shows all the elements of iset on the screen}
FUNCTION Emptyset(iset:tset):boolean;
{Dev. True if Conj:=∅ otherwise False}

IMPLEMENTATION
PROCEDURE Createset(var iset: tset);
Begin

Createlist(iset)
End; {Createset}

PROCEDURE Addelem(elem:integer; var iset:tset);
VAR

insert:boolean;
Begin

if find(elem,iset)=nil then begin
insert:=true

else
insert:= false;

if insert then
Orderedinsert(elem,iset)

End; {Addelem}

PROCEDURE Removeelem(elem:integer; var iset:tset);
VAR

Remove:boolean;
Begin

if Find(elem,iset)=nil then begin
remove:=false

else
remove:= true;

if remove then
Delete(elem,iset);

End; {Removeelem}

FUNCTION Belong(elem:integer; iset:tset):boolean;
Begin

Belong:=(Find(elem,iset)<>nil);
End; {Belong}

PROCEDURE Showset (iset:tset);
Begin

if Emptyset(iset) then
write(‘[]’);

else begin
write(‘[‘,);
View(iset);
writeln(‘]’)

end; {else}
End; {showset}

FUNCTION Emptyset(iset:tset):boolean;
Begin

Emptyset:=Emptylist(iset)
End; {Emptyset}

+ all linked list operations

End. {Set_of_Integers}

• And now the TYPE declaration is changed by a USES
declaration:

TYPE
tconj: Abstracto

por:

USES
Integerset

PROGRAM Eratosthenessieve;
{Prec. integer >=2}
USES

Integerset;
VAR

N,e,coeff:integer;
iset:tset;

BEGIN
writeln(‘maximum number: ‘); {reading maximum set ordinal number}
readln(N);
Createset(iset);
{initializing a new set of integers}

for e:=2 to N do begin
Addelem(e,iset);

for e:=2 to Trunc (sqrt(N)) do
if Belong(e,iset) then begin

coef:=2;
repeat

Removeelem(e*coeff,iset);
coeff:=coeff+1;

until (e*coeff>N)
end; {if}

Showset(iset)
End. {Eratosthenessieve}

	TOPIC 4:ABSTRACT DATA TYPES (ADTs)
	ABSTRACT DATA TYPES (ADTs)
	INTRODUCTION
	INTRODUCTION
	ADT vs IMPLEMENTATION
	A COUNTEREXAMPLE
	CHOSING THE NEW DATA SET REPRESENTATION
	ERATOSTHENES´S SIEVE ALGORITHM
	SOME CONSIDERATIONS ABOUT THE PREVIOUS IMPLEMENTATION
	ADT DEFINITION
	DEVELOPING AN ADT
	ADT SPECIFICATION
	ADT OPERATION CATEGORIES
	SUPPORTING ABSTRACT DATA TYPE IMPLEMENTATION
	THE “SET” ABSTRACT DATA TYPE
	THE “SET” ABSTRACT DATA TYPE
	OPERATION SPECIFICATION
	THE “SET” ABSTRACT DATA TYPE IMPLEMENTATION
	THE “SET” ABSTRACT DATA TYPE IMPLEMENTATION

