
Departamento de Informática
Universidad de Valladolid

Campus de Segovia

TOPIC 5:
ALGORITHM COMPLEXITY

ALGORITHM COMPLEXITY

• Introduction.
• Asymptotic Behaviour.
• Some practical rules to work out the temporal cost.
• Temporal complexity of searching and sorting algorithms

DEFINITION OF ALGORITHM

• An algorithm is an accurate description of the steps
to follow in order to get a solution of a given problem.

• Each step represents a set of actions or operations
performed over a set of objects.

Algorithm: Input Output

Process

SOME FEATURES OF AN ALGORITHM

• An algorithm has to satisfy the following features:

– Accuracy: An algorithm has to defined without ambiguity.

– Deterministic: it involves a predictable behaviour. Given a
particular input, the algorithm has to produce the same
correct output.

– Finite: The algorithm always reachs a solution

QUALITIES OF AN ALGORITHM

• Furthermore, an algorithm has to be:

– As general as possible since in this way will be able to work
out a wide range of problems.

– As Efficient as possible. The efficiency of an algorithm is
related to speed, (the time it takes for an operation to
complete), and space, (the memory or non-volatile storage
used up by the algorithm).

• In general it is difficult to find an algorithm, given a
problem, that satisfies both of them. Therefore, it is
neccesary to reach a compromise between both
features.

ALGORITHM COMPLEXITY.

• Algorithm complexity is a measure of the temporal
and memory space resources spent by an algorithm
in order to work out a problem.

• However the temporal aspect (temporal cost) is the
most important. For this reason algorithm complexity
usually made reference to this last one.

• The temporal cost has to be expressed in terms of the
size of the problem, it involves using relative
measures instead of an absolute ones.

THE TEMPORAL COST OF AN ALGORITHM
IS MEASURED BY MEANS OF STEPS.

• The measure of temporal cost has to be independent of:
– the underlying machine
– the programming language
– The compiler
– Any other hardware or software element that may influence over the

measurement.

• Since an algorithm is described by means of a set of steps, it is
possible to use this concept as an abstract temporal unit.

• Therefore the temporal cost of any algorithm will be given by the
number of steps it takes to complete the problem.

SOME DEPENDENCIES OF THE
TEMPORAL COST

• Dependencies of temporal cost:
– If most significant data is a simple data type then

temporal cost depends only on the data size
(T(n)).

– If most significant data is a composed data type
then, besides the data size, it is neccesary to
assess three possible situations:

• The best case
• The worst case
• The average case

DATA SIZE DEPENDENCE OF TEMPORAL
COST

• According to the problem, the data size
may affect to temporal cost in differents
ways
– Taking into account the magnitude of the

number
– Depending on the number of digits or

elements that make up the data.

DATA SIZE DEPENDECE OF TEMPORAL
COST. EXAMPLES

• Let us suppose the next algorithm that works out the
parity of an integer subtracting 2 sucessively while the
result of this operation is greater than one.
– This algorithm will be achieved after (n DIV 2) subtractions.

• Let us suppose the next slow addition algorithm:
while b>0 do begin

a:=a+1;
b:=b-1;

end;
– In that case T=T(b).

THE BEST, WORST AND AVERAGE CASES

• In computer science, best, worst and average cases
of a given algorithm express what the resource usage
is at least, at most and on average, respectively.

• Average performance and worst-case performance
are the most used in algorithm analysis.

• In real-time computing, the worst-case execution time
is a helpful measure of the temporal cost since it is
important to know how much time might be needed in
the worst case to guarantee that the algorithm would
always finish on time.

type
tinterval=0..N;
tvector=array[1..N] of integer
FUNCTION Ordered_sequential_search(v:tvector;elem:telem):tinterval;
var

i:tinterval;
begin

i:=0;
repeat

i:=i+1;
until (v[i]>=elem) or (i=N);
if v[i]=elem then

Ordered_sequential_search:=i
else

Ordered_sequential_search:=0
End;

-The best case (Tmin(n)): : The element is
in the first search position.
-The worst case (Tmax(n)): The element is
in the last search position or even is not
present.
-The average case (Tave(n)): Each position has
the same probability of containing the element.

THE ORDERED SEQUENTIAL SEARCH ALGORITHM.
THE BEST, WORST AND AVERAGE CASES

THE ORDERED SEQUENTIAL SEARCH ALGORITHM.
THE BEST, WORST AND AVERAGE CASES

• The next operations are regarded as constant with respect
to the temporal cost:

– addition: ‘s’
– comparison: ‘c’
– allocation: ‘a’

THE ORDERED SEQUENTIAL SEARCH ALGORITHM.
THE BEST, WORST AND AVERAGE CASES

Tmin: when v[1]>=elem.
Tmin=3a+3c+s=constant

Tmax: when v[n]<=elem
Tmax=a +n(s+2c+a)+c+a=n(s+2c+a)+2a+c

Tmax=K1n+K2

Tave : Since each position has the same probability of containing the
element, then T(j)=jK1+K2

()

()

()
212

11
2

1

2
1

1 1

21

1
21

1

222
1)(

2
1

1)(

1)()(

cnckknkknknT

knn
n
k

n
kj

n
k

n
kjknT

nPdondePjTnT

ave

n

j

n

j

n

j
ave

n

j
ave

+=++=+
+

=

+
+

=+=

=+=

==

∑ ∑

∑

∑

= =

=

=

ASYMPTOTIC BEHAVIOUR OF
TEMPORAL COST

• If data size is very large then the
asymptotic behaviour of temporal cost
has to be considered.

ASYMPTOTIC BEHAVIOUR OF THE
TEMPORAL COST

• In the picture below the time spent in working out a problem using algorithms with
different temporal cost is shown .

• These temporal costs are expressed by means of a functional representation of
their asymptotic behaviours.

• In this calculation a computer executing 1 million of operations per second is
regarded.

log n n n log n n2 n3 2n n!

3.3 10-6 10-5 3.3 10-5 10-410 0.001 0.001 3.63

5.6 10-6 5 10-5 2.8 10-4 0.002550 0.125 unapproach unapproach

6.6 10-6 10-4 6.6 10-4 0.01100 1 unapproach unapproach

10-5 0.001 0.01 1103 1000 unapproach unapproach

1.3 10-5 0.01 0.13 100104 106 unapproach unapproach

1.6 10-5 0.1 1.6 104105 unapproach unapproach unapproach

2 10-5 1 19.9 106106 unapproach unapproach unapproach

T(n)
n

ASYMPTOTIC BEHAVIOUR OF SOME
FUNCTIONS

0

10

20

30

40

50

60

1 2 3 4 5

Tamaño datos

Pa
so

s
20lg n

8n
en 2n2

0

50

100

150

200

250

300

1 3 5 7 9 11 13 15 17 19 21 23 25

Tamaño dato

P
as

os

en 2n2 8n

20lg n

NOTATION TO DESCRIBE THE
ASYMPTOTIC BEHAVIOUR OF FUNCTIONS

• In order to describe the asymptotic behavior of T(n) for
very large inputs is neccesarily to dispose of a suitable
notation.

• Its purpose is to characterize a function's in a simple
but rigorous way that enables comparison to other
functions.

• These notations are:
– Big- O
– Big Omega
– Big Theta

BIG-O NOTATION

• Big O notation or Big Oh notation, and also Landau
notation or also called asymptotic notation, is a
mathematical notation used to describe the asymptotic
behavior of functions.

• The symbol O is used to describe an asymptotic upper
bound for the magnitude of a function in terms of
another, usually simpler, function.

• Informally, the O notation is commonly employed to
describe an asymptotic tight bound, but tight bounds
are more formally and precisely denoted by the Θ
(capital theta).

BIG-O NOTATION. DEFINITION

• Definition: if f,g:Z+ R+ , then f∈O(g) or g is a tigth bound of f if
there are constans such as no ∈Z+ y λ ∈R+ such that:

f(n)≤ λ g(n) for n≥no

• It means that f does not grow as quick as g. In that way the
asymptotic behaviour of the function is upperly bounded.

• For Ordered sequential search algorithm:

Tmax(n)=k1n+k2 ∈ O(n) since
k1n+k2 ≤ λn for n≥k2/(λ-k1)

• The Big O notation for any constant function with respect to the
time is O(1).

SOME PROPERTIES OF BIG-O NOTATION.
SCALABILITY.

• O(logan)=O(logbn)

• For this reason is not neccessary to specify the
base of the logarithm O(log n).

SOME PROPERTIES OF BIG-O
NOTATION. THE ADDITION RULE.

• The addition rule: if f1∈O(g1) and f2∈O(g2) then
f1+f2 ∈O(max(g1,g2)).

• A generalization of this rule that involves the
scalability property may be expressed as follows:
– if fi ∈O(f) for i=1....k then:

c1f1+......+ckfk ∈O(f).
– So, any polynomial may be expressed as pk(n) ∈O(nk)

SOME PROPERTIES OF BIG-O
NOTATION. THE SUMMATORY RULE.

• The summatory rule: if f∈O(g) and g is a growing function
then:

– if f(i)=i.

– Since any polynomial may be expressed as pk(n) ∈O(nk)
– Then this last expression is an upper bound of the previous function

∑ ∫
=

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∈

n

i

n

dxxgOif
1

1

1

)()(

()∑
=

+=
+

=
n

i

nnnni
1

2

222
1

nnnxdxx
nn

+=−
+

==
++

∫ 22
1

2
)1(

2

221

1

21

1

A USEFULL CONSEQUENCE OF
SUMMATORY RULE

()∑
=

+∈
n

i

kK nOi
1

1

() ()1
2

1
1

11

1

11

1

1

1
1

1
)1(

1

++

++++

∈++

≈
+

−
+

+
=

+
=∫

kk

knkn
k

nOknk

kk
n

k
xdxx

HIERARCHY OF MOST FREQUENT
FUNCTIONS

• The most frequent asymptotic behaviours may be sorted
in growing ordered as follows:

1<<log n<<n<<n log n<<n2<<n3<<.....<<2n<<n!

SOME PRACTICAL RULES IN ORDER TO WORK
OUT THE TEMPORAL COST OF AN ALGORITHM

• Next, a general rules about how to work out the
temporal complexity in the worst case are
shown.

• These rules have to take into account the
temporal cost of:
– Simple instruction
– Composition of instructions
– Selective instructions
– Loops
– Subprograms

SIMPLE INSTRUCTION

• The following simple instructions are supposed to be
constant:

– The arithmetics operations and comparison between simple
data, as long as this last one has a constant size during the
calculations.

– The allocation, writing, and reading of simple data operations

– Any operation that involves access to an array component, a
record field or the next position of a file.

• All these operation are regarded as Θ(1).

COMPOSITION OF INSTRUCTIONS

• Let us suppose that the instructions I1 and I2 have, in
the worst case, the temporal complexities T1(n) and
T2(n) respectively. Then, the temporal cost of the
composition that involves both of them is:

TI1,I2(n)=T1(n)+T2(n)

• Then, taking into account the addition rule, the
temporal cost of this composition will be:

TI1,I2(n)=max(T1(n),T2(n))

SELECTIVE INSTRUCTIONS

• Let us consider the next selective instructions:

– if <condition> then I1 else I2

Tselection(n)=Tcondition(n)+max(T1(n),T2(n))

– Case <expression> of
case1: I1;
case2: I2;
.....
.....
casen: In;

end; {case}

Tselection(n)=Texpression(n)+max(T1(n),....,Tn(n))

ITERATIVE INSTRUCTIONS: LOOPS

• The most simple case is the FOR-loop type:
– for i:=1 to m do I

– Where “m” represents how many times “i” is increased and the
test operation to check if “i” is inside of the loop interval.

– If the body of the loop is made up of instructions with a constant
temporal cost then the previous equation may be written as
follows:

• The “while” and “repeat” loops have not got a general
rule. In that case is neccessary to consider each
situation individually.

∑
=

+=
m

j
Ibucle nTmnT

j
1

)()(

())(1)(nTmnT Ibucle +=

RECURSIVE ALGORITHMS

• For working out the temporal cost of a recursive algorithm it is
neccessary to distinguish between the case base and the recurrent
one.

FUNCTION Fac(n:integer):integer;
Begin

if n=0 then
Fac:=1

else
Fac:=n*Fac(n-1)

End;{Fac}

– The temporal cost of the case base is: Tfac(0)=1
– The temporal cost of the recurrent case is:

Tfac(n)=1+Tfac(n-1)=
Tfac(n)=1+1+Tfac(n-2)=
.....................................
Tfac(n)=1+1+....+1+Tfac(0) = n+1∈O(n)

SEARCHING AND SORTING
ALGORITHMS

• Array-Searching algorithms.
– Sequential search
– Ordered Sequential search
– Binary search

• Array-sorting algorithms.
– Selection sort
– Insertion sort
– Bubble sort
– Quick Sort
– Merge Sort

ARRAY SEARCHING ALGORITHMS

• These algorithms represent techniques of finding a
particular value in a linear array.

• Searching(vector,element):
– i∈{1,....,n} if the element exists
– 0 otherwise

• Data Structure in Pascal:
const

N=100;
type

tInterval=0..N;
tvector=array[1..N] of tElem {ordinal type}

ARRAY SEARCHING ALGORITHMS

• Sequential search
• Ordered sequential search
• Binary search

SEQUENTIAL SEARCH

• The sequential search consists in looking for
sequentially an specific element going through every
component of the linear array.

• This process is over when this element is localized
or if the end of the linear array is reached

• First design step:
ind:=0
Searching inside the array
if vector[ind]=element then

sequentialsearch:=ind
else

sequentialsearch:=0

SEQUENTIAL SEARCH
IMPLEMENTATION IN PASCAL

FUNCTION Sequentialsearch(v:tvector ; elem:telem):tInterval;
{Returns “i” if v[i]=elem otherwise “0”}

VAR
i:tInterval;

BEGIN
i:=0;
repeat

i:=i+1;
until (v[i]=elem) or (i=N);
if v[i]=elem then

Sequentialsearch:=i
else

Sequentialsearch:=0
END; {Sequentialsearch}

The number of times this algorithm is executed
depends on the loop.The worst case is O(n).

ORDERED SEQUENTIAL SEARCH

• The previous search algorithm may be improved if
the array is ordered. (i.e. a growing array).

• In this way, if an array component greater than the
searched element is found, it means that this one
does not exist in this collection.

ORDERED SEQUENTIAL SEARCH,
IMPLEMENTATION IN PASCAL

FUNCTION Orderedsequentialsearch(v:tvector ; elem:telem):tInterval;
{Returns “i” if v[i]=elem otherwise “0”}
VAR

i:tInterval;
BEGIN

i:=0;
repeat

i:=i+1;
until (v[i]≥elem) or (i=N);
if v[i]=elem then

Orderedsequentialsearch:=i
else

Orderedsequentialsearch:=0
END; {Orderedsequentialsearch}

*This algorithm, on the worst case, is O(n).

BINARY SEARCH

• This algorithm is called binary since during the
search process the array is divided successivelly into
two parts.

• Regarding an ordered array, the binary search
consist in:

– Checking if the middle position array component is the
searched element.

– If it is so, then the process is over. Otherwise the process is
repeated up to find the element, considering only the half
part of the array where this element may be localized, or up
to reach the end of the array.

• A binary search is an example of a divide and
conquer algorithm

BINARY SEARCH,
IMPLEMENTATION IN PASCAL

FUNCTION Binarysearch(v:tvector ; elem:telem):tInterval;
{Prec. “v” is growing ordered}
{Returns “i” if v[i]=elem otherwise “0”}
VAR

lowered,upperend,midpos:tInterval;
found:boolean;

BEGIN
lowerend:=1; upperend:=N; found:=false;
while not found and (upperend≥lowerend) do begin

midpos:=(upperend+lowerend) DIV 2;
if elem=v[midpos] then

found:=true
else if elem>v[midpos] then

lowerend:=midpos+1
else

upperend:=midpos-1
end {while}

BINARY SEARCH,
IMPLEMENTATION IN PASCAL

if found then
binarysearch:=midpos

else
binarysearch:=0

END; {Binarysearch}

BINARY SEARCH

• The algorithm complexity of Binary research may be
work out as follows:

Taking into account that:
2k≤ N≤2k+1

and
2k ≤ N
log2k ≤ logN
k ≤ logN

Then, on the worst case the algorithm complexity is :
T(n)≈O[logN]

ARRAY SORTING ALGORITHM

• Next, the most frequent array sorting
algorithm are presented:

– Quadratic algorithms:
• Selection sort
• Insertion sort
• Bubble sort

– Advanced sorting algorithm:
• Quick Sort
• Merge Sort

SELECTION SORT

• First design step: Selection sort goes through the
array searching the lesser element in order to put it in
the correct position. This operation is repeated until
the array is ordered.

SELECTION SORT
– 1. The lesser element among v[1],...,v[n] is put in v[1]. In

order to perform this operation, v[1] and v[i] {where
v[i]=min(v)} are interchanged.

– 2. The lesser element among v[2],...,v[n] is put in v[2]. In
order to perform this operation, v[2] and v[i] {where
v[i]=min(v)} are interchanged.

– (n-1). The lesser element among v[n-1]and v[n] is put in v[n-
1]. In order to perform this operation, v[n-1] and v[i] {where
v[i]=min(v)} are interchanged.

4 5 7 1 9 8 2

1 5 7 4 9 8 2

1 2 4 5 7 8 9

SELECTION SORT,
IMPLEMENTED IN PASCAL

PROCEDURE Selectionsort(var v:tvector);
{Returns an growing ordered array}
VAR

i, j,lessposition:tInterval;
lessvalue,aux:telem;

BEGIN
for i:=1 to N-1 do begin

lessvalue:=v[i]
lessposition:=i
for j:=i+1 to N do

if v[j]<lessvalue then begin
lessvalue:=v[j];
lessposition:=j

end; {if }

Searchs the lesser element
among
i+1,....,N

SELECTION SORT,
IMPLEMENTED IN PASCAL

if lessposition<>i then begin
aux:=v[i];
v[i]:=v[lessposition];
v[lessposition]:=aux

end {if}
end{for i}

END; {Selectionsort}

Performs an interchange if
lessposition is different to “i”

INSERTION SORT

• First design step: Insertion goes through the array
inserting v[i] in its correct position among the already
ordered elements.

INSERTION SORT

– 1. v[1] is regarded as the first element.

– 2. v[2] is inserted in its correct position with respect to v[1].

– 3. v[3] is inserted in its correct position with respect to v[1]
and v[2].

– i. v[i] is inserted in its correct position with respect to
v[1],...,v[i-1].

– n. This operation is repeated with the last element of the
array.

INSERTION SORT,
IMPLEMENTED IN PASCAL

PROCEDURE Insertionsort(var v:tvector);
{Returns an growing ordered array}
VAR

i, j:tInterval;
aux:telem;

BEGIN
for i:=2 to N do begin

aux:=v[i]
j:=i-1
while (j≥1) and (v[j]>aux) do begin

v[j+1]:=v[j];
j:=j-1

end; {while}
v[j+1]:=aux

end {for}
END; {insertionsort}

Shifting the lesser value

Inserting the value in its
correct position

BUBBLE SORT

• First design step: Bubble sort goes through the array
searching the lesser element from the last position up
to the current one where it is inserted.

BUBBLE SORT

– 1. Inserts the lesser element in the first position.
• The last element is compared with respect to the previous last

one interchanging their values if they are in decreasing
ordered.This operation is repeated until the first one is reached.
(then the lesser element is located at the first position).

– 2. Inserts the second lesser element in the second array
position.

• It is performed as we mentioned before but finishing when the
second position is reached.

– 3. repeats until the array is ordered interchanging in each
case if it is neccessary.

BUBBLE SORT,
IMPLEMENTED IN PASCAL

PROCEDURE bubblesort(var v:tvector);
{Returns a growing ordered array}
VAR

i, j:tInterval;
aux:telem;

BEGIN
for i:=1 to N-1 do

for j:=N downto i+1
{The lesser element is searched from the last element going
backward and inserting in its corresponding place vi}

if v[j-1]>v[j] then begin
aux:=v[j];
v[j]:=v[j-1];
v[j-1]:=aux;

end; {if}
END; {Bubblesort}

Interchange

ADVANCED SORTING ALGORITHM

• Quick sort

• Merge sort

QUICK SORT
– This sorting algorithm consist in dividing a vector in

two blocks. On the first one are located those
elements less than a certain value (reference),
while the remaining ones are placed on the second
block.

– This procedure is repeated dividing successively
each block into two new ones and locating the
elements as above.

– The condition for stopping is satisfied when any
block of one element (ordered block) is reached.

– This algorithm follows the “Divide and Win”
scheme.

QUICK SORT,
PSEUDOCODE

If “v” is a one element block then
The array is already ordered

else
divides “v” into two blocks A and B satisfying that any
element from A is less than any element from B.

Endif
Sorts A y B using Quick Sort
Returns “v” already ordered.

• Where “Divides “v” into two blocks A and B” may be
described as follows:

Chose an element as reference of “v”
For each element of “v” do:

if element is less than reference then it has to be placed in A
otherwise in B.

QUICK SORT,
IMPLEMENTED IN PASCAL

PROCEDURE Quicksort(var v:tvector);
{Returns a growing ordered array}

PROCEDURE Sort_from_upto(var v:tvector;left,right:tinterval);
{returns ‘v[left..right]’ as a growing ordered array}
{next page}

BEGIN {Quicksort}
Sort_from_upto(v,1,n);

END; {Quicksort}

PROCEDURE Sort_fro_upto(var v:tvector;left,right:tinterval);
{returns ‘v[left..right]’ as a growing ordered array}
VAR

i, j:tInterval;
p,aux:telem;

BEGIN
............

QUICK SORT,
IMPLEMENTED IN PASCAL

BEGIN
i:=left; j:=right; p:=v[(left+right) DIV 2];
while i<j do begin {both blocks are reorganized}

while v[i]<p do
i:=i+1;

while p<v[j] do
j:=j-1;

if i≤ j then begin {interchanging elements}
aux:=v[i];
v[i]:=v[j];
v[j]:=aux;
i:=i+1; j:=j-1; {updating positions}

end; {if}
end; {while}

if izq<j then sort_from_upto(v, left, j);
if i<der then sort_from_upto(v, i, right);
END; {Sort_from_upto}

Interchange

QUICK SORT,
TRACE OF AN EXAMPLE

V=[0,5,15,9,11]
1. Sort_from_upto(v,1,5) p=v[3]=15

i=1 [0,5,15,9,11] 0<15
i=2 [0,5,15,9,11] 5<15
i=3 [0,5,15,9,11] 15 not <15

i=3 j=5 [0,5,15,9,11] 11 not >15
i=4 j=4 [0,5,11,9,15] interchange. Loop exit condition

1.1.sort_from_upto(v,1,4) p=v[2]=5
i=1 [0,5,11,9] 0<5
i=2 [0,5,11,9] 5 not< 5

i=2 j=4 [0,5,11,9] 9>5
i=2 j=3 [0,5,11,9] 11>5
i=2 j=3 [0,5,11,9] 5 not>5
i=3 j=1 [0,5,11,9] interchange. Loop exit condition

QUICK SORT,
TRACE OF AN EXAMPLE

1.1.1.sort_from_upto(v,3,4) p=v[3]=11
i=3 [11,9] 11 not <11
i=4 [11,9] 9 not> 11

i=4 j=3 [9,11] interchange. Loop exit condition

V=[0,5,15,9,11]
1.2 sort_from_upto(v,4,5) p=v[4]=11

i=4 [11,15] 11 not <11
i=4 j=5 [11,15] 15>11
i=4 j=4 [11,15] 11 not >11
i=5 j=3 [11,15] interchange. Loop exit condition

izq=4 not <j=3
i=5 not <der=5
recursion is over.

growing ordered array: [0,5,9,11,15]

QUICK SORT,
TRACE OF AN EXAMPLE

Sort_from_upto(v,1,5)

Sort_from_upto(v,1,4) Sort_from_upto(v,4,5)

Sort_from_upto(v,3,4)

QUICK SORT,
WORKING OUT ITS TEMPORAL COMPLEXITY

• On the worst case: if the first element is chosen as the reference and
the array is decreasing ordered then the loop for each element is
executed in:

(n-1)+(n-2)+(n-3)+....+1 steps

where each member of this summatory comes from each recursive
invocation. The following expression may be obtained from this
summatory :

that it can be represented by means of a quadratic order T(n)∈O(n2)

• However if the chosen reference value is the array middle point and
this array is not ordered then this algorithm has a temporal complexity
of O(n log n).

() ()[]() ()∑
=

−
=

−+−
=−

n

i

nnnnin
1 2

1
2

111

Size of the array Number of divisions

MERGE SORT

– In that case the scheme is similar to Quick sort, since the
underlying idea is “divide and win”. However the main effort
is not devoted to divide the array and reorganize each block
after division but building the ordered array by means of
merging the differents generated blocks.

– The main idea consist in dividing “v” into two blocks, A and B,
in order to merge both of them, maintaning the growing
order, once these ones have been merged in this way (it
means, using the same merge sort algorithm).

MERGE SORT,
PSEUDOCODE

If v is a one element block then
the array v is already ordered

else
divide v into two blocks “A” and “B”

endif

Sorts “A” and “B” using Mergesort
Merges the ordered “A” and “B” blocks for building the whole ordered
array.

• where: “divide v into two blocks “A” and “B”” may be described in
more detail as follows:

Allocate to “A” the block [v1,.....,vnDIV2]
Allocate to “B” the block [vnDIV2+1,......vn]

• and “…Merges the ordered “A” and “B” blocks..” consist in
merging the already ordered components of “A” and “B”.

MERGE SORT,
IMPLEMENTED IN PASCAL

PROCEDURE Mergesort(var v:tvector);
{Returns a growing ordered array}

PROCEDURE Merge_from_upto(var v:tvector; izq, der: tinterval);
{returns ‘v[left..right]’ as a growing ordered array}
VAR
centro :tInterval;

PROCEDURE Merge(var v:tvector; left,mid,right:tinterval; var
w:tvector);

BEGIN {Merge_from_upto}
mid:=(left+right)DIV2;
if left<mid then

Merge_from_upto(v,left,mid);
if mid<right then

Merge_from_upto(v,mid+1,right);
Merge(v,left,mid,right,v)

END; {Merge_from_upto}

MERGE SORT,
IMPLEMENTED IN PASCAL

BEGIN {Mergesort}
Merge_from_upto(v,1,n)

END; {Mergesort}

MERGE SORT,
IMPLEMENTED IN PASCAL

PROCEDURE Merge(var v:tvector; left,mid,right:tinterval; var w:tvector);
{Returns an ordered array as a result of merging orderly the blocks v[left..ce] and
v[mid+1..right] }

VAR
i, j,k:tInterval;

BEGIN
i:=left; j:=mid+1; k:=left; {k goes through w}
while(i ≤ mid) and (j ≤right) do begin

if v[i]<v[j] then begin
w[k]:=v[i];
i:=i+1

end; {if}
else begin

w[k]:=v[j];
j:=j+1;

end; {else}
k:=k+1

end; {while}

MERGE SORT,
IMPLEMENTED IN PASCAL

for k:=j to de do
w[k]:=v[k]
for k:=i to mid do

w[k+right-mid]:=v[k]
END; {Merge}

MERGE SORT,
TRACE OF AN EXAMPLE

V=[8,5,7,3]
1. Merge_from_upto(v,1,4) , middle=2

1.1. left(1) <middle(2) Merge_from_upto(v,1,2), middle=1
1.1.1. left(1) not< middle(1)
1.1.2. middle(1)< right(2)

1.1.2.1 left(2) not< middle(2)
1.1.2.2. middle(2) not< right(2)
1.1.2.3. Merge(v,2,2,2,v) trivial

Merge(v1,1,2,v)-------- w1[5,8]

MERGE SORT,
TRACE OF AN EXAMPLE

1.2. middle(2) < right(4) Merge_from_upto(v,3,4), middle=3
1.2.1. left(3) not< middle(3)
1.2.2. middle(3) < right(4)

1.2.2.1. left(4) not< middle(4)
1.2.2.2. middle(4) not< right(4)
1.1.2.3. Merge(v,4,4,4,v) trivial

Merge(v3,3,4,v)-------- w2[3,7]

1.3. Merge(v,1,2,4,v)------------w[3,5,7,8]
That represents the Ordered merge of w1 and w2

MERGE SORT,
TRACE OF AN EXAMPLE

Merge_from_upto(v,1,4)
middle=2

left<middle
1<2

Merge_from_upto(v,1,2)
middle=1

middle<right
2<4

Merge-from_upto(v,3,4)
centro=3

left<middle
1not <1

middle<right
1<2

Merge_from_upto(v,2,2)
centro=2

Merge(v,1,1,2,v)

left<middle
2not <2

middle< right
2 not <2

Merge(v,2,2,2,v)

left<middle
3not <3

middle<right
3<4

Merge_from_upto(v,4,4)
middle=4

Merge(v,3,3,4,v)

left<middle
4not <4

middle< right
4 not <4

Merge(v,4,4,4,v)

Merge(v,1,2,4,v)
Program is over

MERGE SORT,
DETERMINING THE ALGORITHM COMPLEXITY

• On the worst case: Since the time to perform the merge is proportional
(the lenght of the array) then the temporal cost might be expressed in
terms of the following recurrence:

• The general term of this recurrence may be work out as follows
(regarding n as a power of 2 (such as n=2j).

• Where if j≤log n then the temporal cost order is O(n logn).

⎪⎩

⎪
⎨
⎧

>++⎟
⎠
⎞

⎜
⎝
⎛

=
= 1

2
2

1
)(

32

1

nsiknknT

nsik
nT

() ()()
()
() ()()

()

j
j knjkT

knknT
knkknknT

knknT
knkknknTnT

++=

==
=++=

=++++=
=++=

++++=

2

52

4232

42

3232

)1(2
...

388
24824

244
2422)(

	TOPIC 5:ALGORITHM COMPLEXITY
	ALGORITHM COMPLEXITY
	DEFINITION OF ALGORITHM
	SOME FEATURES OF AN ALGORITHM
	QUALITIES OF AN ALGORITHM
	ALGORITHM COMPLEXITY.
	THE TEMPORAL COST OF AN ALGORITHM IS MEASURED BY MEANS OF STEPS.
	SOME DEPENDENCIES OF THE TEMPORAL COST
	DATA SIZE DEPENDENCE OF TEMPORAL COST
	DATA SIZE DEPENDECE OF TEMPORAL COST. EXAMPLES
	THE BEST, WORST AND AVERAGE CASES
	THE ORDERED SEQUENTIAL SEARCH ALGORITHM. THE BEST, WORST AND AVERAGE CASES
	THE ORDERED SEQUENTIAL SEARCH ALGORITHM. THE BEST, WORST AND AVERAGE CASES
	THE ORDERED SEQUENTIAL SEARCH ALGORITHM. THE BEST, WORST AND AVERAGE CASES
	ASYMPTOTIC BEHAVIOUR OF TEMPORAL COST
	ASYMPTOTIC BEHAVIOUR OF THE TEMPORAL COST
	ASYMPTOTIC BEHAVIOUR OF SOME FUNCTIONS
	NOTATION TO DESCRIBE THE ASYMPTOTIC BEHAVIOUR OF FUNCTIONS
	BIG-O NOTATION
	BIG-O NOTATION. DEFINITION
	SOME PROPERTIES OF BIG-O NOTATION. SCALABILITY.
	SOME PROPERTIES OF BIG-O NOTATION. THE ADDITION RULE.
	SOME PROPERTIES OF BIG-O NOTATION. THE SUMMATORY RULE.
	A USEFULL CONSEQUENCE OF SUMMATORY RULE
	HIERARCHY OF MOST FREQUENT FUNCTIONS
	SOME PRACTICAL RULES IN ORDER TO WORK OUT THE TEMPORAL COST OF AN ALGORITHM
	SIMPLE INSTRUCTION
	COMPOSITION OF INSTRUCTIONS
	SELECTIVE INSTRUCTIONS
	ITERATIVE INSTRUCTIONS: LOOPS
	RECURSIVE ALGORITHMS
	SEARCHING AND SORTING ALGORITHMS
	ARRAY SEARCHING ALGORITHMS
	ARRAY SEARCHING ALGORITHMS
	SEQUENTIAL SEARCH
	SEQUENTIAL SEARCHIMPLEMENTATION IN PASCAL
	ORDERED SEQUENTIAL SEARCH
	ORDERED SEQUENTIAL SEARCH,IMPLEMENTATION IN PASCAL
	BINARY SEARCH
	BINARY SEARCH,IMPLEMENTATION IN PASCAL
	BINARY SEARCH,IMPLEMENTATION IN PASCAL
	BINARY SEARCH
	ARRAY SORTING ALGORITHM
	SELECTION SORT
	SELECTION SORT
	SELECTION SORT,IMPLEMENTED IN PASCAL
	SELECTION SORT,IMPLEMENTED IN PASCAL
	INSERTION SORT
	INSERTION SORT
	INSERTION SORT,IMPLEMENTED IN PASCAL
	BUBBLE SORT
	BUBBLE SORT
	BUBBLE SORT,IMPLEMENTED IN PASCAL
	ADVANCED SORTING ALGORITHM
	QUICK SORT
	QUICK SORT,PSEUDOCODE
	QUICK SORT,IMPLEMENTED IN PASCAL
	QUICK SORT,IMPLEMENTED IN PASCAL
	QUICK SORT,TRACE OF AN EXAMPLE
	QUICK SORT,TRACE OF AN EXAMPLE
	QUICK SORT,TRACE OF AN EXAMPLE
	QUICK SORT,WORKING OUT ITS TEMPORAL COMPLEXITY
	MERGE SORT
	MERGE SORT,PSEUDOCODE
	MERGE SORT,IMPLEMENTED IN PASCAL
	MERGE SORT,IMPLEMENTED IN PASCAL
	MERGE SORT,IMPLEMENTED IN PASCAL
	MERGE SORT,IMPLEMENTED IN PASCAL
	MERGE SORT,TRACE OF AN EXAMPLE
	MERGE SORT,TRACE OF AN EXAMPLE
	MERGE SORT,TRACE OF AN EXAMPLE
	MERGE SORT,DETERMINING THE ALGORITHM COMPLEXITY

