
Departamento de Informática
Universidad de Valladolid

Campus de Segovia

TOPIC 7:
SOFTWARE TESTING

SOFTWARE TESTING

• Introduction
• Psycological aspects of software testing
• Information flow of software testing
• Indirect test.
• Direct test. Design of test cases
• Integration testing
• Debbuging

SOFTWARE TESTING TECNIQUES.
INTRODUCTION

• It represents a final revision of the
specification, design and encoding phases.

• Main goal of software testing:
– To find errors

• The purpose of software testing is to design
test data sets with a high probability to find a
new error.

PSYCOLOGICAL ASPECTS OF
SOFTWARE TESTING

• Software testing is usually not well regarded by
programmers

• Some external aspects such as temporal limitations,
product´s costs, product´s chances, … together the
not well understood “destructive” nature of software
testing does not make easy this task.

• In this sense, it might be justified to distrust of the
programmer objectivity when he tests his
appplication.

• That is the reason to involve an external referee team
during the testing process.

FLOW OF INFORMATION

TEST

ASSESMENT
DEBUGGING

MODELO DE
FIABILIDAD

SOFTWARE CONFIGURATION

ERRORS

ERROR RATE DATA

TESTING RESULTS

TEST CONFIGURATION

EXPECTED RESULTS

RELIABILITY PREDICTIOONS

CORRECTIONS

SOFTWARE CONFIGURATION:
Requirement specification
Design specification
Source code

TEST CONFIGURATION:
Process planning
Test tools
Test cases
Expected results

INDIRECT TEST

• These methods are known as indirect since they are
performed without a computer

• These ones are carried out just after the encoding
phase and before testing the software using a
computer.

• The indirect test involves a visual inspection of
program code and they are performed by a team of
analyst and programmers.

• Main goal: Find errors, no solutions.
• This testing approach detects groups of errors

allowing after a massive correction.

DESIGNING TEST CASES

• There are two main product-testing approch:
– White-box tets: Also known as clear box testing,

glass box testing or structural testing uses an
internal perspective of the system to design test
cases based on internal structure.

– Black-box test: takes an external perspective of
the test object to derive test cases.The test
designer selects valid and invalid input and
determines the correct output. There is no
knowledge of the test object's internal structure.

• A more complete software testing process is
achieved combining both approachs.

DESIGN TECNIQUES TO DESIGN
TEST CASES

Purpose:
– Reduce the number of test case mantaining the test

effectivity.

– According to the approachs:
• Black-box (what it does)
• White-box (how it is done):

WHITE-BOX TEST

• As it was mentioned before these tecniques
uses an internal perspective of the system to
design test cases.

• The test cases generated by means of white-
box approach have to ensure:
– That all the independent paths of an specific

module will be executed at least once.
– That all the logical decisions will be performed

taking into account both the te true and false
values.

– That all loops will be exexuted regarding their
operational limits.

– That all the internal data structure will be tested.

CICLOMATIC COMPLEXITY METRIC

• This metric allow us to measure the
logical complexity of a procedural
design.

• This measurement may be used to
define a basic set of execution paths

• In order to determine the ciclomatic
complexity a control flow graph will be
used.

CONTROL FLOW GRAPH

• It is a representation, using graph notation, of all
paths that might be traversed through a program
during its execution.

• Each node in the graph represents a basic block, i.e.
a straight-line piece of code without any jumps…

• Directed edges are used to represent jumps in the
control flow.

• There are, in most presentations, two specially
designated blocks: the entry block, through which
control enters into the flow graph, and the exit block,
through which all control flow leaves.

GRAPHICAL REPRESENTATION OF SOME
COMMON CONTROL STRUCTURES

SEQUENCE

IF

ELSE

THEN

END-IF IF SELECTION

WHILE-LOOP

REPRESENTACIÓN DEL GRAFO DE
FLUJO DE LAS ESTRUCTURAS DE

CONTROL

REPEAT-LOOP

CASE

OPTION
1

END
CASE

OPTION
2

OPTION
n

.........

CASE SELECTION

AN EXAMPLE DESCRIPTION USING A
FLOWCHART

1

3

6

7 8 5

4

2

9
10

BEGINNING

END

THE SAME EXAMPLE DESCRIPTION
USING A CONTROL FLOW GRAPH.

7 8

9

11

10

6 4,5

2,3

1

FLOW GRAPHS RELATED TO LOGICAL
COMPOSED CONDITIONS

Y X

END
IF

B X

A

X Y

END
IF

B Y

A

IF A OR B
THEN X
ELSE Y

F

F

T

T

T

T

F

F

IF A AND B
THEN X
ELSE Y

CICLOMATIC COMPLEXITY

• It is a software metric to measure
quantitatively the logical complexity of a
program.

• Under this approach that represents to work
out the maximum number of independent
paths of a program.

• According to this context, an independent
path is any logical path that introduces new
statements. In terms of a graph that means a
new direct edge that has not been considered
yet.

• This quantitative mesure give us an upper
bound to the number of test cases.

WORKING OUT THE CICLOMATIC
COMPLEXITY

• Some ways to work out the ciclomatic complexity:

– The ciclomatic complexity (V(G)) is equal to the numbers of
region that compose the control flow graph.

– V(G)=A-N+2
• Where A is the number of direct edge and is the number of

nodes that compose the control flow graph.
– V(G)=P+1

• Where P is the number of predicate nodes present on the
control flow graph.

HOW TO OBTAIN THE TEST CASES

• The test cases are generated guaranting
the execution of all the independent
paths.

CICLOMATIC COMPLEXITY.
INDEPENDENT PATHS

•V(G)=4 Regions
•V(G)= 11A-9N+2=4
•V(G)=3NP+1=4

Independent paths:
•Path 1: 1-11
•Path 2: 1-2-3-4-5-10-1-11
•Path 3: 1-2-3-6-8-9-10-1-11
•Path 4: 1-2-3-6-7-9-10-1-11

7 8

9

11

10

6 4,5

2,3

1

R4

R1

R2

R3

EXAMPLE
• Design test cases by means of ciclomatic complexity

metric for the following code:

r:=0;
if (x<0 or y<0) then

writeln(‘x e y must be a positive number’)
else begin

r:=(x+y)/2;
writeln(‘the average is: ‘, r)
end;

EXAMPLE

x<0

R:=(x+y)/2
writeln(......)Writeln(...)

R=0

BEGINNING

END

y<0

1

2
3

5
4

6

EXAMPLE. CONTROL FLOW GRAPH

5 4

6

3 4

2

1

F

F

T

T

R2
R1

R3

V(g)=3 regions=3
V(g)=8A-7N+2=3
V(g)=2NP+1=3

EXAMPLE. INDEPENDENT PATHS

• Since the ciclomatic complexity is three, this
code has three independent paths:
– C1: 1-2-4-6
– C2: 1-2-3-4-5
– C3: 1-2-3-5-6

• Therefore the test cases associated to these
independent paths are:

– C1: x<0 e (y irrelevant)
– C2: x≥0 e y<0
– C3: x≥0 e y≥0

EXAMPLE. INDEPENDENT PATHS

x<0

R:=(x+y)/2
writeln(......)Writeln(...)

R=0

y<0

C1

C2

C3

BLACK BOX APPROACH TO DESIGN
TEST CASES

• This approach considers the product
functionality.

• Therefore the testing process is
performed over the system interface.

• This approach reduce the number of
test cases by means of selecting
valid and invalid inputs,

SOME KIND OF DETECTED ERRORS

• Absent or incorrect functions
• Interface errors
• Data base access errors
• Data structure errors
• Performance errors
• Initialization and completion errors.

BLACK BOX TECHNIQUES

• Equivalence partitioning

• Boundary value Analysis

EQUIVALENCE PARTITIONING

• It consists in dividing the input data
field into a set of data classes
known as equivalence classes.

EQUIVALENCE CLASS CONCEPT

• An equivalence class is a input set of
data defining both valid and invalid
states of the system.

– Valid class: it generates an expected value.
– Invalid class: it generates an unexpected value.

• This division may be carried out by
means of the input conditions described
in the specification.

INPUT CONDITIONS

• An input condition may be expressed as an
statement of the specificacion.

An specific value

A related set of values

A range of values

A logic condition

“..Enter five values..”

“....Reserved words of a
language....”

“...the values are between
0 and 10...”

“...it must be...”

THE PROCEDURE

• Identification of equivalence classes.

• Generation of test cases from the
equivalence classes:

• An equivalence class may be represented by any
of their element.

IDENTIFICATION OF
EQUIVALENCE CLASSES

• For each input condition a valid and invalid
equivalence class may be identified.

• This procedure is heuristic.

• However there are some criteria to make
easy the identification procedure.

EQUIVALENCE CLASS IDENTIFICATION
CRITERIA

Input conditions Valid equivalence classes Invalid equivalence classes

1. Range of values 1 EC involving any
value inside the range.

2 EC involving any value
outside the range

2. Specific values 1 EC involving that specific
value

2 EC involving two values,
One above and one below wrt
The specific value

3. A related set of values 1 EC for each element
1 EC representing one
element outside the set
of values

4. Logic Condition 1 EC satisfaying the
logic condition

1 EC not satisfaying
the logic condition

EQUIVALENCE CLASS TABLE

• The E. C. Table is the place where all the identified
classes are described in order to find the different
tets cases related to them.

Input conditions Valid equivalence class Invalid equivalence class

HOW TO OBTAIN THE TEST CASES
FROM THE E.C.?

• Valid equivalence classes:
– Each test case has to cover the maximum

number of valid E.C.
– it implies to find the minimum number of test

cases in order to cover all the valid E.C..

• Generate a test case for each identified
invalid equivalence class for avoiding
hidden errors.

Example 1:
– Design a set of test cases to detect possible errors during

the process of declaring an identifier taking into account
the following syntactic rules of an hypothetic
programming:

• The identifier must be between 5 and 15 characters long.
• These characters may be:

– Upper and lower cases
– Dígits (0,9)
– Dash (-)

• The system distiguishs between upper and lower cases.
• Dash may not be placed neither at the beggining nor at the

end of an identifier.
• Several dashes may be placed consecutively inside the

identifier
• Any identifier must contain, at least, one alphabetic

character.
• The identifier may not be a reserved word of this

programming language.

• Recording the input conditions
Input conditions Valid Equivalence classes Invalid equivalence classes

-Between 5 and 15
characters long

-These charcaters may be
upper and lower cases, digits
and dashes.

-The system distiguishs between
upper and lower cases

-Dash may not be placed neither
at the beggining nor at the end of
an identifier

-Several dashes may be placed
consecutively inside the identifier

- Any identifier must contain,
at least, one alphabetic character

-The identifier may not be a
reserved word of this
programming language

• Recording the equivalence classes

- These charcaters may be
upper and lower cases, digits
and dashes.

5. Some characters of the identifier
∉{letras, dígitos, guión}

-The system distiguishs between
upper and lower cases

6. Declared identifier
∈{Valid identifiers}

7. The same identifier but changing
one character from upper to
lower case or vicerversa

-Any identifier must contain,
at least, one alphabetic character

11. At least one alphabetic
character is present on the identifier

12. No alphabetic character is
present on the identifier

- The identifier may not be a
reserved word of this
programming language

13. Identifier
∉{reserved words}

14, 15, 16 ...One case for each
reserved word.

-Dash may not be placed neither
at the beggining nor at the end of
an identifier

-Several dashes may be placed
consecutively inside the identifier

8. Identifiers withour dashes at the
ends of these ones and presenting
several consecutive dashes
inside them

9. Identifier presenting a dash
at the beggining

10. Identifier presenting a dash
at the end

Input conditions Valid equivalence classes Invalid equivalence classes

-Between 5 and 15
characters long 1. 5≤nº characters. ≤15

2. nº characters<5

3. 15< nº characters

4. Characters of the identifier
∈{letras, dígitos, guión}

• Obtaining the test cases
Identificador Clases de equivalencia

cubiertas

Num-1-letra3---d3 (17) 3

Nd3 2

Num-1---d3 (10) 1,4,6,8,11,13 (regarding all the valid
Equivalence classes)

Nu%m-1---d3 (11) 5

NuM-1---d3 (10) 7

-um-1---d3 (10) 9

Num-1---d- (10) 10

456-1---23 (10) 12

Real 14

..(The remaining reserved words).. 15,16......

Identifier accepted
by the system

Resultado

Error message

Error message

Error message

Error message

Error message

Error message

Error Message

Error message

Error message

THE BOUNDARY VALUE ANALYSIS (BVA)

• BVA is based on the experimental evidency that
errors are usually localized on the boundaries
of input data fields.

• That kind of considerations enhances the test
eficiency.

• Boundary conditions : these conditions
represent values just above and below of one
equivalence class.

GENERATING THE TEST CASES

• It supposes to generate as many test
cases as it is necessary for considering
all the boundary conditions.

• There are, as Equivalence partitioning,
some heuristic criteria to facilitate the
identification process

Defining the test casesInput and output conditions

1 case to consider the maximum value of the range

1 case to consider the minimum value of the range

1 case to consider just the value above the maximum

1 case to consider just the valuie below the minimum

1 case to consider the specific numeric value

1 case to consider just the value above the specific value

1 case to consider just the value below the specific value

As in the item 1

1. Range of values as an
input condition

2. An specific numeric value
as an input condition.

3. Range of values as an
output condition

As in the item 24. An specific numeric value
as an output condition.

5. A data structure as an
output or input condition.

1 case to consider the first element of the data structure

1 case to consider the last element of the data structure

Example 2:

– Let us suppose a program that works out,
given the sides , what kind of triangle it is.

– Triangle conditions:
A+B>C and A+C>B and B+C>A

• According to the E.P. we should consider just one
valid and invalid class.

{A=4, B=5, C=3}, {A=1, B=2, C= 5}

• This approach would not detect an error as
A+B≥C

• However BVA includes the case {A=1, B=2, C=3}

• BVA applied to example 1
Condition Descriptions of test cases

Between 5 y 15 characters

1 case involving 15 charcaters

1 case involving 5 characters

1 case involving 16 characters

1 case involving 4 characters

Condition Test cases

Between 5 y 15 characters

Num-1-let-3---d3 (15)

Numd3 (5)

Num-1-letr-3---d3 (16)

Nud3 (4)

SUMMARIZING

• The testing process consist in executing the
program for detecting errors.

• The testing process is not exhaustive.

• The goal: reduce the number of test cases
keeping up the efficiency.

• There are two approachs:
• Black box: take into account the functionality of the

system.
• White box: take into account the internal logic

SUMMARIZING
• White box test case design techniques:

– Ciclomatic complexity:It is a software metric to measure
quantitatively the logical complexity of a program.

• Black box test case design techniques:

– Equivalence partitioning: it divides the input data field into
valid and invalid equivalence classes.

– Boundary value analysis: it consists in exercising the
boundary condition of all the equivalence classes.

• A more effective black box testing process
involves both techniques.

	TOPIC 7:SOFTWARE TESTING
	SOFTWARE TESTING
	SOFTWARE TESTING TECNIQUES. INTRODUCTION
	PSYCOLOGICAL ASPECTS OF SOFTWARE TESTING
	FLOW OF INFORMATION
	INDIRECT TEST
	DESIGNING TEST CASES
	DESIGN TECNIQUES TO DESIGN TEST CASES
	WHITE-BOX TEST
	CICLOMATIC COMPLEXITY METRIC
	CONTROL FLOW GRAPH
	GRAPHICAL REPRESENTATION OF SOME COMMON CONTROL STRUCTURES
	REPRESENTACIÓN DEL GRAFO DE FLUJO DE LAS ESTRUCTURAS DE CONTROL
	AN EXAMPLE DESCRIPTION USING A FLOWCHART
	THE SAME EXAMPLE DESCRIPTION USING A CONTROL FLOW GRAPH.
	FLOW GRAPHS RELATED TO LOGICAL COMPOSED CONDITIONS
	CICLOMATIC COMPLEXITY
	WORKING OUT THE CICLOMATIC COMPLEXITY
	HOW TO OBTAIN THE TEST CASES
	CICLOMATIC COMPLEXITY. INDEPENDENT PATHS
	EXAMPLE
	EXAMPLE
	EXAMPLE. CONTROL FLOW GRAPH
	EXAMPLE. INDEPENDENT PATHS
	EXAMPLE. INDEPENDENT PATHS
	BLACK BOX APPROACH TO DESIGN TEST CASES
	SOME KIND OF DETECTED ERRORS
	BLACK BOX TECHNIQUES
	EQUIVALENCE PARTITIONING
	EQUIVALENCE CLASS CONCEPT
	INPUT CONDITIONS
	THE PROCEDURE
	IDENTIFICATION OF EQUIVALENCE CLASSES
	EQUIVALENCE CLASS IDENTIFICATION CRITERIA
	EQUIVALENCE CLASS TABLE
	HOW TO OBTAIN THE TEST CASES FROM THE E.C.?
	THE BOUNDARY VALUE ANALYSIS (BVA)
	GENERATING THE TEST CASES
	SUMMARIZING
	SUMMARIZING

