
Departamento de Informática
Universidad de Valladolid

Campus de Segovia

TOPIC 8:
ALGORITHM

CORRECTNESS PROOFS

1

ALGORITHM CORRECTNESS PROOFS

• Preliminary concepts.
• Correctness.
• Preconditions and postconditions rules
• Correctness proofs in loopless code
• Loops
• Program termination

2

PRELIMINARY CONCEPTS.
Some Definitions

• The algorithm correctness proofs consists of a of
formal techniques for determining whether a program
works correctly or not.

• A program works correctly: if it satisfies a given specification.
• Correctness proof tecniques: consists in an inference

process. Hence, there is an inference rule for each kind of
executable sentence.

• Formal representation: Hoare triples.

3

PRELIMINARY CONCEPTS
Assertions

• An assertion is a logical sentence about the
states of a system. An assertion is denoted
by means of square brackets {A}.

• An state represents the current set of values
associated to the most relevant parameters
that define a system .

• Preconditions y postconditions:
– Preconditions involve any condition about the

input data.
– Postconditions involve any condition about the

output data.
– Example: Program working out the square root.

• Precondition: The input must not be a negative number.
• Postcondition: The square root of this number.

4

PRELIMINARY CONCEPTS

• A program is a sequence of sentence that converts the initial
state into a final one.

• The initial state represents the previous state to execution.

• The final state represents the state once the code was
executed.

5

PRELIMINARY CONCEPTS
Formal representation, Hoare triples
• If C is a piece of code, then any assertion {P} is called

precondition of C if {P} just involves the initial state. Any
assertion {Q} is called postcondition if just only involves the final
state,.

• That definition is represented as: {P}C{Q} and is called Hoare
triple.

• Example 1: {y≠0} x:=1/y {x=1/y}
• Example 2: Sometimes there is no precondition:

– { } a:=b {a=b}
– This one represents the most general case, it means, any input

generates an output satisfying the postcondition.
– Here, { } represents the empty assertion which can be interpreted as

“true for all possible states”.

6

PRELIMINARY CONCEPTS.
Notation

• In most of the pieces of code, the final states depends
on the initial ones.

• There are two possible notations for denoting this
dependency:
– Subscripts representation: This representation makes a

distinction between the initial and the final state by means of
subscripts. The ‘α’ subscript is related to the initial state and
‘ω’ to the final one.

– Shadow variables representation: the shadow variables
are that do not appear in the code and that are introduced to
store initial values of certain storage location. Their definition
have to appear on the precondition.

{a=A,b=B} h:=a; a:=b; b:=h {a=B, b=A}
7

CORRECTNESS CONCEPTS
• If {P}C{Q} is a hoare triple representing a piece of code with a

precondition {P} and postcondition {Q}, then {P}C{Q} is correct if
every possible initial state satisfying {P} results in a final state
satisfying {Q}.

• In this regard, it is possible to distinguish between:
– Partial Correctness: If C is a piece of code with precondition {P}

and postcondition {Q} then {P}C{Q} is said to be partially correct if
the final state of C satisfies {Q}, provided the initial state satifies {P}
although there is no final state due to the fact that the program does
not terminate.

– Total Correctness: if {P}C{Q} is partially correct and C terminates
then C is said to be totally correct.

• A loopless partially correct code is always totally correct also.
Then this distinction is only important when loops and recursion
are present on the code.

8

PRECONDITION AND POSTCONDITIONS
RULES

• If {R} and {S} are two assertions then it is said that {R} is stronger than
{S} if {R}⇒{S} ({S} implies {R}). If {R} is stronger than {S} then it is said
that {S} is weaker than {R}.

– Example 1: {i>1} is stronger than {i>0} since {i>1} implies also {i>0}. Then
{i>1} ⇒{i>0}.

• If an assertion {R} is stronger than an assertion {S} then every state
satisfying {R}, satisfies also S but no viceversa. The strengthening of an
assertion reduces the number of states that satisfy this one.

– Stronger ⇒ more selective, less general.
– Weaker ⇒ less selective, more general.
– the weakest assertion is { } since it consideres all the possible states.
– The strongest assertion is {False} since it represents that there is no state

satifying the condition.

9

PRECONDITION STRENGTHENING

• If a piece of code C satisfies the precondition {P} then
an strengthening of this precondition will be satisfied
too.

• If {P}C{Q} is correct and P1⇒P then it is also true that
{P1}C{Q} is correct. This leads to the folowing
inference rule:

P1 ⇒P
{P}C{Q}
{P1}C{Q}

– Example: Let´s supposse the following Hoare triple is correct:
{y≠0} x:=1/y {x=1/y}, then prove that {y=4} x:=1/y {x=1/y} is
also correct.

y=4 ⇒ y ≠0
{y≠0} x:=1/y {x=1/y}
{y=4} x:=1/y {x=1/y}

10

EMPTY PRECONDITION STRENGTHENING

• The empty precondition may be strengthened to yield any
precondition {P}.

• Example:
– { } a:=b {a=b} can be used to justify {P} a:=b {a=b} where {P} is any

precondition.

• As a general rule:
– It is always advatageous to formulate the weakest precondition that

assures a given postcondition. In this way any stronger precondition
will be automatically satisfied.

– As well as any program should be written such that they are as
versatile as possible (they cover as many initial states as possible).

11

POSTCONDICITION WEAKENING

• According to the postcondition weakening principle if
{P}C{Q} and {Q}⇒{Q1} are satisfied then {P}C{Q1} is
correct. This leads the following inference rule:

{P}C{Q}
{Q}⇒{Q1}
{P}C{Q1}

• Example: Prove that, if { } max:=b {max=b} is correct,
then { } max:=b {max≥b} is also correct.

{ } max:=b {max=b}
max=b⇒max ≥b
{ } max:=b {max ≥b}

12

CONJUNCTION RULE

• The following rule allow us to strengthen the precondition and
postcondition simultaneously.

• Definition: If C is a piece of code and {P1}C{Q1} and {P2}C{Q2}
have been established then it could be concluded that {P1 ∧
P2}C{Q1 ∧ Q2}. Formally it can be expressed as follows:

{P1}C{Q1}
{P2}C{Q2}
{P1 ∧ P2}C{Q1 ∧ Q2}

• As a particular case:
{ }C{Q1}
{P2}C{Q2}
{P2}C{Q1 ∧ Q2}

13

CONJUNCTION RULE

• Example:
– Use the Hoare triples { }i:=i+1 {iω:=iα+1}, {iα>0 }i:=i+1 {iα>0} to prove

that:

{i>0 }i:=i+1 {i>1}

{ }i:=i+1{iω:=iα+1}
{iα>0 }i:=i+1 {iα>0}
{iα>0 }i:=i+1 {(iα>0) ∧ (iω:=iα+1)}

– where: iα:=iω-1 and since iα>0 then iω>1. Hence:

{i>0 }i:=i+1 {i>1}

14

DISJUNCTION RULE

• The following rule allow us to weak the precondition and
postcondition simultaneously.

• Definition: if C is a piece of code and {P1}C{Q1} y {P2}C{Q2} have
been established then it can be concluded that {P1 ∨ P2}C{Q1 ∨
Q2}. Formally it can be expressed as follows:

{P1}C{Q1}
{P2}C{Q2}
{P1 ∨ P2}C{Q1 ∨ Q2}

• As a particular case:
{ }C{Q1}
{P2}C{Q2}
{P2}C{Q1 ∨ Q2}

15

CORRECTNESS PROOFS IN LOOPLESS CODE

• Correctness: To prove the correctness of any piece
of code it is necessary to use the postcondition as a
starting point. Then, the initial precondition is derived
from the last postcondition proving the code in the
opposite order in which it is executed.

16

PreC.1 = Initial PreC.
Código 1

Código 2
PostC. 1 = PreC. 2

Código 3
PostC. 2 = PreC. 3

PostC. 3 = Final PostC. Execution

Correctness

ASSIGNMENT STATEMENTS

• This inference rule requires that no involved variable share the same
memory space with another. It means do not consider either pointers or
arrays.

• The assignment statements are statements of the form V:=E, where V is a
variable and E is an expression.

{ }V:=E{ V=E α}

• However that expression is not always correct (i.e. x:=1/y). In this case, it
is necessary to strengthen the precondition.

17

ASSIGNEMENT RULE

• Assignement rule: If C is a sentence of the form V:=E with
postcondition {Q}, then the precondition {P} could be found by
replacing every instance of V in Q by E. If QE

V is the expression
thus obtained, then:

{P}V:=E{Q}
{P}={QE

V} ⇒ { V=E α,Q}
{QE

V}V:=E{Q}

• Example: Find which is the precondition {P} such that
{P} i:=2*i {i<6} is correct:

{QE
V}={iω=2*iα, i ω<6}⇒{2*i<6} ⇒{i<3}

18

ASSIGMENT RULE

{QE
V}V:=E{Q}

V:=E

QE
v

Q

19

ASSIGMENT RULE
Examples

• Example 1: Find the precondition {P} such that {P} j:=i+1 {j>0} is
correct:

{QE
V}={jω=iα+1, j ω>0}⇒{i α+1>0}

• Example 2: Find the precondition {P} such that {P} y:=x2 {y>1} is
correct:

{QE
V}={yω=xα*x α, y ω>1}⇒{x α2>1}

• Example 3: Find the prostcondition {Q} such that {x>2} x:=x2 {Q}
is correct

{Q} ⇒{x α >2, x ω=x α2}⇒{x ω>4 }
• Example 4: Find the precondition {P} such that {P} x:=1/x {x≥0} is

correct:
{QE

V} ⇒{xω=1/x α, xω ≥0}⇒{x α >0 }

20

CONCATENATION OF CODE

• Concatenation means that the pieces of code are
executed secuencially, in such a way that the final
state of the first piece of code becomes the initial state
of the second piece of code and so on.

• Concatenation rule: Let C1 and C2 be two pieces of
code, and let C1;C2 be their concatenation. If {P}C1{R}
y {R}C2{Q} are both correct then we can conclude that:

{P}C1{R}
{R}C2{Q}

{P}C1;C2{Q}

21

CONCATENATION OF CODE
Example 1

• Example: Prove that the following piece of code is correct:
{ }c:=a+b; c:=c/2 {c=(a+b)/2}

{ P}c:=c/2 {c=(a+b)/2}
P={cω=c/2,c ω =(a+b)/2}⇒{c/2=(a+b)/2}

{ c/2=(a+b)/2}c:=c/2 {c=(a+b)/2}

{P} c:=a+b {c/2=(a+b)/2}
P={cω=a+b,c ω/2 =(a+b)/2}⇒{(a+b)/2=(a+b)/2}⇒{ }

{ }c:=a+b {c/2=(a+b)/2}

22

EXAMPLE 2

• Example: Prove that the following piece of code is correct:
{ }s:=1; s:=s+r; s=s+r*r {s=1+r+r2}

{ P}s:=s+r*r {s=1+r+r2}
P={sω=s+r2,s ω =1+r+r2}⇒{s+r2=1+r+r2}

{ s+r2=1+r+r2}s:=s+r*r {s=1+r+r2}
{P} s:=s+r {s=1+r}

P={sω=s+r,sω=1+r}⇒{s+r=1+r}
{s+r=1+r }s:=s+r {s=1+r}

{P} s:=1 {s=1}
P={sω=1,sω=1}⇒{1=1} ⇒{ }

{ }s:=1 {s=1}

23

EXAMPLE 3

• Example: Prove that the following piece of code is
correct: {a=A,b=B}h:=a; a:=b; b=h {a=B,b=A}

{ P}b:=h {a=B,b=A}
P={b=h, a=B, b=A}⇒{h=A, a=B}

{ h=A, a=B}b:=h {a=B, b=A}
{P} a:=b {h=A, a=B}

P={a=b, h=A, a=B}⇒{h=A, b=B}
{h=A, b=B}a:=b {h=A, a=B}

{P} h:=a {h=A, b=B}
P={h=a, h=A,b=B}⇒{a=A, b=B}

{a=A, b=B}h:=a {h=A, b=B}

24

THE IF STATEMENT
with Else clause

• If C1 y C2 are two piece of code of a program and B is
a logical expression (condition) then the statement ‘if
B then C1 else C2’ may be interpreted as “if B is true
then C1 is executed otherwise C2 is executed”.

• The correctness proof of this statement involves:
– If the initial state satifies B, as well as {P}, then C1 is executed

and hence it supposes to prove that {P∧B} C1 {Q} is correct.
– If the initial state satifies {not B, as well as {P}, then C2 is

executed and hence it supposes to prove that {P∧¬B} C2 {Q}
is correct.

25

INFERENCE RULE FOR AN IF
STATEMENT WITH ELSE CLAUSE

{P∧B}C1{Q}
{P∧¬B}C2{Q}

{P}if B then C1 else C2{Q}

B

P

+ -P Λ B P Λ ¬B

C1 C2

Q

26

THE IF STATEMENT
with Else clause

• Example: Prove that the following piece of code is correct:
{ }if a>b then m:=a else m:=b{(m≥a) ∧ (m ≥ b)}

• { a>b}m:=a {(m≥a) ∧ (m ≥ b)}
P={m=a, (m≥a) ∧(m ≥ b)}⇒{a ≥ a, a≥b}

{a=a}⇒{a≥a}, {a=a, a ≥b} ⇒{a≥b}
{ a>b} ⇒{a≥b} {Fortalecimiento PreC.}

{ a >b}m:=a {(m≥a) ∧ (m ≥ b)}
• { ¬(a>b)}m:=b {(m≥a) ∧ (m ≥ b)}

P={m=b,(m≥a) ∧(m ≥ b)}⇒{b≥a, b≥b}
{b=b}⇒{b≥b}, {b≥a, b=b} ⇒{b≥a}

{ ¬(a>b)}⇒{b≥a}
{ b ≥ a}m:=b {(m≥a) ∧ (m ≥ b)}

27

THE IF STATEMENT
without Else clause

• If C1 is a piece of code and B is some condition then
the statement ‘if B then C1 ’ may be interpreted as: “if
B is true then C1 is executed”.

• The correctness proof of this statement involves:
– If the initial state satifies B, as well as {P}, then C1 is executed

and therefore it supposes to prove that {P∧B} C1 {Q} is
correct.

– If the initial state satifies {not B}, as well as {P}, then it
supposes to prove that {P∧¬B}⇒ {Q} is correct.

28

INFERENCE RULE FOR AN IF
STATEMENT WITH ELSE CLAUSE

{P∧B}C1{Q}
{P∧¬B}⇒{Q}

{P}if B then C1{Q}

B

P

+ -P Λ B P Λ ¬B

C1

Q

29

THE IF STATEMENT
without Else clause

• Example: Prove that the following piece of code is correct:
– { }if max<a then max:=a {(max≥a)}

• {¬(max<a)}⇒{(max≥a)}

• { max<a} max:=a {(max≥a)}
P={max=a, (max≥a)}⇒{a≥a}

{a≥a} ⇒{ },
Since {max<a} ⇒ { }

30

CORRECTNESS PROOFS IN CODES WITH
LOOPS

• A loop invariant is any assertion that is, at the same
time, a precondition and a postcondition of a piece of
code.

• A loop variant is an expression that measures the
progress made toward satisfying the exit condition.

• The iterative structures in Pascal that will be
considered for the correctness proofs are:

• ‘while B do C’, where B is some logical condition and C is a
piece of code inside the loop.

• ‘repeat C until B’, where B is some logical condition and C is a
piece of code inside the loop.

• In this first step only the partial correctness of these
structures will be studied.

• Termination proofs will be considered later.

31

INVARIANT OF A PIECE OF CODE

– Example: Prove that {r=2i} is an invariant of the following
piece of code: i:=i+1; r:=r*2.

{ P}r:=r*2 {r=2i}
P={r=r*2, r=2i}⇒{r*2=2i}⇒{r=2i-1}

{r=2i-1} r:=r*2 {r=2i}

{P} i:=i+1 {r=2i-1}
P={i=i+1, r=2i-1}⇒{r=2i+1-1} ⇒{r=2i}

{r=2i}i:=i+1 {r=2i-1}

32

SOME HINTS TO FIND THE INVARIANT.

• The loop invariant is a precursor of the postcondition, which
means that it must somehow be similar to the postcondition.

• The loop invariant contains all variables that change from iteration
to iteration.

• The loop invariant is only a formalization of the programmer
goals.

33

EXAMPLE

• Find the loop invariant of this piece of code:
sum:=0;
j:=0;
while j<>n do begin

sum:=sum+a;
j:=j+1

end;

34

EXAMPLE I
• If the loop invariant is I={sum=j*a}

{ P} j:=j+1; {sum=j*a}
P={j=j+1,sum=j*a}⇒{sum=(j+1)*a}
{sum=(j+1)*a} j:=j+1 {sum=j*a}
{P} sum:=sum+a; {sum=(j+1)*a}

P={sum=sum+a, sum=(j+1)*a}⇒{sum+a=(j+1)*a}
{sum=j*a} sum:=sum+a; {sum=(j+1)*a}

Therefore {I}C{I}
{P} j:=0 {sum=j*a}

P={j=0,sum=j*a}⇒{sum=0}
{sum=0} j:=0 {sum=j*a}

{P} sum:=0 {sum=0}
P={sum=0,sum=0}⇒{ }
{ } sum:=0 {sum=0}

{(¬ B∧I)} ⇒ {(sum=j*a) ∧(j=n)} ⇒{sum=n*a}
35

INFERENCE RULE FOR A WHILE LOOP.

• If C is a piece of code such that {B ∧ I} C {I} is correct then we
can conclude that:

{B ∧ I} C {I}
{I} while B do C {(¬ B∧I)}

36

INFERENCE RULE FOR A WHILE
LOOP

{B ∧ I} C {I}
{I} while B do C {(¬ B∧I)}

37

B

I

+

-

B Λ I

¬B Λ I

C

C

I

B Λ I

EXAMPLE I CORRECTNESS PROOF OF A
WHILE LOOP

• Prove the correctness of the following piece of code.

i:=1;
sum:=0;
while not (i=n+1) do begin

sum:=sum+i*i;
i:=i+1

end:

• This piece of code works out the following summatory
Σj=1

n i2.

38

EJEMPLO I
if {(sum=Σj=1

n j2) ∧ (i=n+1)} is the postcondition and
I= {(sum=Σj=1

i-1 j2) ∧ (i ≤ n+1)} the invariant, then:
{ P} i:=i+1; {(sum=Σj=1

i-1 j2) ∧ (i ≤ n+1)}
P={i=i+1,sum= Σj=1

i-1 j2, i ≤ n+1}⇒{sum= Σj=1
i j2, i+1 ≤ n+1}

{ i+1 ≤ n+1} ⇒ {i ≤ n} ⇒{i<n+1}
{(sum=Σj=1

i j2) ∧ (i <n+1)} i:=i+1 {(sum=Σj=1
i-1 j2) ∧ (i ≤ n+1)}

{P} sum:=sum+i2; {(sum=Σj=1
i j2) ∧ (i < n+1)}

P={sum=sum+i2, sum= Σj=1
i j2, i < n+1} ⇒ {sum+i2= Σj=1

i j2, i<n+1}
{sum+i2= i2+Σj=1

i-1 j2, i<n+1} ⇒ {sum= Σj=1
i-1 j2, i< n+1}

{(sum=Σj=1
i-1 j2) ∧ (i<n+1)} sum:=sum+i2; {(sum=Σj=1

i j2) ∧ (i < n+1)}
Con lo que queda demostrado que {B∧ I}C{I}

{P} sum:=0 {(sum=Σj=1
i-1 j2) ∧ (i≤n+1)}

P={sum=0, sum= Σj=1
i-1 j2, i ≤ n+1}⇒{0= Σj=1

i-1 j2, i ≤ n+1}
{(0= Σj=1

i-1 j2) ∧ (i ≤ n+1)} sum:=0 {(sum= Σj=1
i-1 j2) ∧ (i ≤ n+1)}

{P} i:=1 {(0= Σj=1
i-1 j2) ∧ (i ≤ n+1)}

P={i=1, 0= Σj=1
i-1 j2, i<n+1}⇒{0= Σj=1

0 j2 , 1 ≤ n+1}⇒{0 ≤ n}
{n ≥0 } i:=1 {(0= Σj=1

i-1 j2) ∧ (i<n+1)}
{(¬ B∧I)} ⇒ {(i=n+1) ∧ ((sum=Σj=1

i-1 j2) ∧ (i ≤ n+1))} ⇒
{(sum=Σj=1

n j2) ∧ (i=n+1)} 39

EJEMPLO I

If {(sum=Σj=1
n j2) ∧ (i=n+1)} is the postcondition

And I= {(sum=Σj=1
i-1 j2) ∧ (i ≤ n+1)} the invariant, then:

{n ≥0 } i:=1 {(0= Σj=1
i-1 j2) ∧ (i<n+1)}

{(0= Σj=1
i-1 j2) ∧ (i ≤ n+1)} sum:=0 {(sum= Σj=1

i-1 j2) ∧ (i ≤ n+1)}
while not (i=n+1) do

{(sum=Σj=1
i-1 j2) ∧ (i<n+1)} sum:=sum+i2; {(sum=Σj=1

i j2) ∧ (i <n+1)}
{(sum=Σj=1

i j2) ∧ (i <n+1)} i:=i+1 {(sum=Σj=1
i-1 j2) ∧ (i ≤ n+1)}

{B ∧ I} C {I}
{I} while B do C {(¬ B∧I)}

{(¬ B∧I)} ⇒ {(i=n+1) ∧ ((sum=Σj=1
i-1 j2) ∧ (i ≤ n+1))} ⇒

{(sum=Σj=1
n j2) ∧ (i=n+1)}

40

EXAMPLE II, CORRECTNESS
PROOF OF A WHILE LOOP

• Prove that the following piece of code is correct:
f:=1;
t:=0;
i:=0;
while (i ≤ n) do begin

t:=t+f;
f:=f*r;
i:=i+1

end;
• It is supposed that it works out the following expression:

t=Σj=0
n rj for i>n

41

EXAMPLE II

If {(t=Σj=0
n rj) ∧ (i>n)} is the postcondition and

I= {(t=Σj=0
i-1 rj)∧(f=ri)∧(i≤n+1)} the invariant

{ P} i:=i+1; {(t=Σj=0
i-1 rj)∧(f=ri)∧(i≤n+1)}

P={i=i+1,t= Σj=1
i-1 rj, f=ri, i ≤ n+1}⇒{t= Σj=1

i rj, f=ri+1, i+1 ≤ n+1}
{ i+1 ≤ n+1} ⇒ {i ≤ n} ⇒{i<n+1}

{(t=Σj=1
i rj)∧ (f=ri+1)∧(i <n+1)} i:=i+1 {(t=Σj=1

i-1 rj)∧(f=ri)∧ (i ≤ n+1)}
{P} f:=f*r; {(t=Σj=1

i rj)∧ (f=ri+1)∧(i <n+1)}
P= {f=f*r, t=Σj=1

i rj, f=ri+1, i <n+1}⇒ {t=Σj=1
i rj, f*r=ri+1, i <n+1} ⇒

⇒ {t=Σj=1
i rj, f=ri, i <n+1}

{(t=Σj=1
i rj)∧(f=ri)∧(i <n+1)} f:=f*r; {(t=Σj=1

i rj)∧ (f=ri+1)∧(i <n+1)}
{P} t:=t+f; {(t=Σj=1

i rj)∧ (f=ri)∧(i <n+1)}
P= {t=t+f, t=Σj=1

i rj, f=ri, i <n+1}⇒ {t+f=Σj=1
i rj, f=ri, i <n+1} ⇒

⇒{t+ri=ri+Σj=1
i-1 rj, f=ri, i <n+1} ⇒{t=Σj=1

i-1 rj, f=ri, i <n+1}
{(t=Σj=1

i-1 rj)∧(f=ri)∧(i <n+1)} f:=f*r; {(t=Σj=1
i rj)∧ (f=ri)∧(i <n+1)}

Then {B∧ I}C{I} is proved

42

EXAMPLE II

{P} i:=0; {(t=Σj=1
i-1 rj)∧ (f=ri)∧(i ≤ n+1)}

P= {i=0, t=Σj=1
i-1 rj, f=ri, i≤n+1}⇒ {t=Σj=1

-1 rj, f=r0, 0 ≤ n+1} ⇒

⇒{t=0, f=1, 0 ≤ n+1}
{(t=0)∧(f=1)∧(0<n+1)} i:=0; {(t=Σj=1

i-1 rj)∧ (f=ri)∧(i ≤n+1)}
{P} t:=0; {(t=0)∧ (f=1)∧(-1≤ n)}

P= {t=0, t=0, f=1, -1 ≤ n}⇒ {0=0, f=1, -1 ≤ n}
{(f=1)∧(-1≤ n)} t:=0; {(t=0)∧ (f=1)∧(-1 ≤n)}

{P} f:=1; (f=1)∧(-1≤ n)}

P= {f=1, f=1, -1 ≤ n}⇒ {1=1, -1 ≤ n}
{(-1≤ n)} f:=1; {(f=1)∧(-1 ≤n)}

{(i>n)} ⇒{i=n+1}
{(¬ B∧I)} ⇒ {(i=n+1)∧((t=Σj=0

i-1 rj)∧(f=ri)∧(i≤n+1))} ⇒
{((t=Σj=0

n rj)∧(f=rn+1)∧(i=n+1))}

43

EXAMPLE II
If {(t=Σj=0

n rj) ∧ (i>n)} is the postcondition and
I= {(t=Σj=0

i-1 rj)∧(f=ri)∧(i≤n+1)} the invariant

{(-1≤ n)} f:=1; {(f=1)∧(-1 ≤n)}
{(f=1)∧(-1≤ n)} t:=0; {(t=0)∧ (f=1)∧(-1 ≤n)}

{(t=0)∧(f=1)∧(0<n+1)} i:=0; {(t=Σj=1
i-1 rj)∧ (f=ri)∧(i ≤n+1)}

while i ≤n do
{(t=Σj=1

i-1 rj)∧(f=ri)∧(i <n+1)} f:=f*r; {(t=Σj=1
i rj)∧ (f=ri)∧(i <n+1)}

{(t=Σj=1
i rj)∧(f=ri)∧(i <n+1)} f:=f*r; {(t=Σj=1

i rj)∧ (f=ri+1)∧(i <n+1)}
{(t=Σj=1

i rj)∧ (f=ri+1)∧(i <n+1)} i:=i+1 {(t=Σj=1
i-1 rj)∧(f=ri)∧ (i ≤ n+1)}

{B ∧ I} C {I}
{I} while B do C {(¬ B∧I)}

{(i>n)} ⇒{i=n+1}
{(¬ B∧I)} ⇒ {(i=n+1)∧((t=Σj=0

i-1 rj)∧(f=ri)∧(i≤n+1))} ⇒
{((t=Σj=0

n rj)∧(f=rn+1)∧(i=n+1))}
44

INFERENCE RULE FOR A REPEAT LOOP

• If C is a piece of code such that {I} C {Q} is correct, where I={¬
B ∧ Q}, then we can coclude that:

{I} C {Q}
{I} repeat C until B {(B∧Q)}

45

INFERENCE RULE FOR A REPEAT LOOP

{I} C {Q}
{I} repeat C until B {(B∧Q)}

S

¬ B Λ Q

Q S

B
+

-

B Λ Q

¬ B Λ Q

Q ¬ B Λ Q

46

EXAMPLE I, CORRECTNESS
PROOF OF A REPEAT LOOP

• Prove the correctness of the following piece of code:

z:=0;
u:=x;
repeat

z:=z+y;
u:=u-1

until u=0

• This piece of code works out the product of two integer numbers.

47

EXAMPLE1 I

48

• If {(z=x*y) ∧ (u=0)} is the postcondition and {Q}= {(z+u*y=x*y) ∧ (u≥0)}
the invariant, then:

{ P} u:=u-1;{(z+u*y=x*y) ∧ (u≥0)}
P={u=u-1, z+u*y=x*y, u ≥ 0}⇒{z+(u-1)*y=x*y, u-1≥0}

{ u-1 ≥ 0} ⇒ {u ≥ 1} ⇒ {u >0}
{(z+(u-1)*y=x*y) ∧ (u > 0) } u:=u-1 {(z+u*y=x*y) ∧ (u ≥ 0)}

{P} z:=z+y; {(z+(u-1)*y=x*y) ∧ (u >0) }
P={z=z+y, z+(u-1)*y=x*y, u>0} ⇒ {z+y+(u-1)*y=x*y, u >0}

{z+y+(u-1)*y=x*y} ⇒ {z+y+u*y-y=x*y} ⇒ {z+u*y=x*y}
{(z+u*y=x*y) ∧ (u > 0)} z:=z+y; {(z+(u-1)*y=x*y) ∧ (u > 0)}

Con lo que queda demostrado que {¬ B ∧ Q} C {Q}
{P} u:=x; {(z+u*y=x*y) ∧ (u > 0)}

P={u=x, z+u*y=x*y, u>0}⇒{z+x*y=x*y, u>0} ⇒ {z=0, x>0}
{z=0, x>0} u:=x; {(z+u*y=x*y) ∧ (u > 0)}

{P} z:=0 {(z=0) ∧ (x>0)}
P={z=0, z=0, x>0}⇒{0=0 , x>0}⇒{x>0}

{x>0 } z:=0 {(z=0) ∧ (x>0)}
{(B∧Q)} ⇒ {(u=0) ∧ ((z+u*y=x*y) ∧ (u ≥0))} ⇒

{(z=x*y) ∧ (u=0)}

EXAMPLE I
If {(z=x*y) ∧ (u=0)} is the postcondition and
I= ={¬ B ∧ Q}= {(z+u*y=x*y) ∧ (u>0)} the invariant, then:

Q= {(z+u*y=x*y) ∧ (u ≥ 0)}

{x>0} z:=0 {(z=0) ∧ (x>0)}
{z=0, x>0} u:=x; {(z+u*y=x*y) ∧ (u > 0)}

repeat
{(z+u*y=x*y) ∧ (u > 0)} z:=z+y; {(z+(u-1)*y=x*y) ∧ (u > 0)}
{(z+(u-1)*y=x*y) ∧ (u > 0) } u:=u-1; {(z+u*y=x*y) ∧ (u ≥ 0)}

until u=0

{ I}C{Q}
{ I} repeat C until B {(B∧Q)}

{(B∧Q)} ⇒ {(u=0) ∧ ((z+u*y=x*y) ∧ (u ≥0))} ⇒
{(z=x*y) ∧ (u=0)}

49

DOCUMENTATION

**
* This function works out the product of two *
* Integer numbers. *
* parameters: x>0 *
* Result: z *
**
BEGIN {Prec: x>0; Dec: u-1}

z:=0; u:=x;
REPEAT {z+u*y=x*y Λ u > 0}
z:=z+y; u:= u-1
UNTIL (u=0);

END { Post: z=x*y Λ u=0}

50

TOTAL CORRECTNESS

• A program is partially correct if it can be
proved that, if the program terminates, it
terminates satisfying the postcondition. If, in
addition, we can prove that the program does
indeed terminate then this one is totally
correct.

• For establishing the termination condition we
have to study how change the variables
involved into the loop variant.

• As soon as the entry condition of the loop
fails, after a finite number of iteration, then the
program does terminate.

51

Example
• Prove that the following piece of code terminates for n≥0.

i:=0;
f:=1;
while i<>n do

begin
i:=i+1;
f:=f*r;

end;

• Let us suppose that “n” is initialized to 0.
• The only variable in the entry condition that changes inside the

loop is “i”. Hence the loop variant is “i”.
– If n=0 then the entry condition is not satisfied and the loop is not

executed. The program does terminate.
– If n>0 then as soon i=n, after “n” iterations increasing in one unit

the value of i, the entry condition fails and the loop terminates. The
program does terminate.

52

CORRECTNESS OF A RECURSIVE
ALGORITHM

• PARTIAL CORRECTNESS:
– Prove the correctness of the case base by

means of an inductive hypothesis.
– Prove the correctness of the recurrent

cases by means of the inductive step.
• TOTAL CORRECTNESS:

– Prove that, In each recursive invocation,
some parameters are changing toward the
case base condition.

53

	TOPIC 8:ALGORITHM CORRECTNESS PROOFS
	ALGORITHM CORRECTNESS PROOFS
	PRELIMINARY CONCEPTS.Some Definitions
	PRELIMINARY CONCEPTSAssertions
	PRELIMINARY CONCEPTS
	PRELIMINARY CONCEPTS Formal representation, Hoare triples
	PRELIMINARY CONCEPTS.Notation
	CORRECTNESS CONCEPTS
	PRECONDITION AND POSTCONDITIONS RULES
	PRECONDITION STRENGTHENING
	EMPTY PRECONDITION STRENGTHENING
	POSTCONDICITION WEAKENING
	CONJUNCTION RULE
	CONJUNCTION RULE
	DISJUNCTION RULE
	CORRECTNESS PROOFS IN LOOPLESS CODE
	ASSIGNMENT STATEMENTS
	ASSIGNEMENT RULE
	ASSIGMENT RULE
	ASSIGMENT RULEExamples
	CONCATENATION OF CODE
	CONCATENATION OF CODEExample 1
	EXAMPLE 2
	EXAMPLE 3
	THE IF STATEMENTwith Else clause
	INFERENCE RULE FOR AN IF STATEMENT WITH ELSE CLAUSE
	THE IF STATEMENTwith Else clause
	THE IF STATEMENTwithout Else clause
	INFERENCE RULE FOR AN IF STATEMENT WITH ELSE CLAUSE
	THE IF STATEMENTwithout Else clause
	CORRECTNESS PROOFS IN CODES WITH LOOPS
	INVARIANT OF A PIECE OF CODE
	SOME HINTS TO FIND THE INVARIANT.
	EXAMPLE
	EXAMPLE I
	INFERENCE RULE FOR A WHILE LOOP.
	INFERENCE RULE FOR A WHILE LOOP{B  I} C {I}{I} while B do C {( BI)}
	EXAMPLE I CORRECTNESS PROOF OF A WHILE LOOP
	EJEMPLO I
	EJEMPLO I
	EXAMPLE II, CORRECTNESS PROOF OF A WHILE LOOP
	EXAMPLE II
	EXAMPLE II
	EXAMPLE II
	INFERENCE RULE FOR A REPEAT LOOP
	INFERENCE RULE FOR A REPEAT LOOP{I} C {Q}{I} repeat C until B {(BQ)}
	EXAMPLE I, CORRECTNESS PROOF OF A REPEAT LOOP
	EXAMPLE1 I
	EXAMPLE I
	DOCUMENTATION
	TOTAL CORRECTNESS
	Example
	CORRECTNESS OF A RECURSIVE ALGORITHM

