

Universidad de Valladolid

Departamento de Informática

Teoría de autómatas y lenguajes formales. 2º I.T.Informática. Gestión.

Examen extraordinario. 12 de septiembre de 2002.

Apellidos, Nombre	 	

- 1. Todos los alumnos deberán entregar esta hoja, grapada con las soluciones.
- 2. Se entregarán las respuestas EN EL ORDEN PROPUESTO.
- 3. En todos los casos, justifíquese la respuesta, lo más concisamente posible.

(1	(8 respuestas correctas	: 2 puntos; 7 correctas:	1'5 p.; 6 correctas;	1 p.; otro caso:	0 p.)
----	-------------------------	--------------------------	----------------------	------------------	-------

Dado un alfabeto E y dos lenguajes L_1 y L_2 sobre E, indíquese si cada una de las siguientes afirmaciones es cierta o falsa. (Contéstese en los recuadros de esta misma página).

	Si L_1	es	regular	entonces	cumple e	el lema	de	bombeo	de	los	lenguajes	regulares	s.
			0								0 0	0	

2.	Si	L_1	no e	es regular	entonces	no	cumple	el len	ıa de	bombeo	de	los	lenguajes	regulares
----	----	-------	------	------------	----------	----	-------------------------	--------	-------	--------	----	-----	-----------	-----------

3.	Si L_1 y L_2 son independientes de contexto, entonces $L_1 \cup L_2$ también lo	es.
٠.	or z ₁ j z ₂ son macpenarences are contented, entences z ₁ c z ₂ tameren re	

4.		Si L_1 y	L_2 son	independ	dientes	de	contexto,	entonces	$L_1 \cap$	L_2	también	lo	es
----	--	------------	-----------	----------	---------	----	-----------	----------	------------	-------	---------	----	----

5.	Si L_1	es inde	pendiente	de	contexto.	entonces	es	recursivo.

6. Si
$$L_1$$
 no es recursivamente numerable, entonces su complementario tampoco lo es.

- 7. Si L_1 no es recursivo, su complementario tampoco lo es.
- 8. | Si L_1 y L_2 son recursivos, su intersección también lo es.

(2 p.) Sobre el alfabeto $\{a, b\}$ se pide:

- 1. Reconocedor finito determinista mínimo y una expresión regular para el conjunto de cadenas que admiten aba como **subcadena**.
- 2. Reconocedor finito determinista mínimo para el conjunto de cadenas que admiten *aba* como **subsecuencia**.
- 3. Reconocedor finito determinista mínimo para el conjunto de cadenas que admiten *aba* como subsecuencia y además tienen longitud par.
- 4. Expresión regular y reconocedor finito determinista mínimo para las cadenas del lenguaje anterior (3) que además comienzan por ab.

(3) (2 p.) Considérense las gramáticas siguientes:

$$G_1: \left\{ egin{array}{lll} S &
ightarrow & aS \mid R \ R &
ightarrow & aRb \mid \epsilon \end{array}
ight. \quad G_2: \left\{ egin{array}{lll} S &
ightarrow & aSb \mid A \ A &
ightarrow & aA \mid \epsilon \end{array}
ight. \quad G_3: \left\{ egin{array}{lll} S &
ightarrow & aSb \mid R \ R &
ightarrow & ARb \mid P \ P &
ightarrow & S \mid \epsilon \ A &
ightarrow & aA \mid a \end{array}
ight.$$

- 1. Generan el mismo lenguaje. ¿Cuál?
- 2. G_1 es LALR(1) ¿Por qué?
- 3. ¿Cuáles de ellas son ambiguas?
- 4. Eliminando la recursión a la izquierda y factorizando, cuando proceda, ¿cuáles dan lugar a una gramática LL(1)?
- 5. G_2 no es LALR(1) porque presenta un conflicto. ¿De qué tipo? (Indicación: considérense las cadenas $ab \ y \ aab$)
- 6. ¿Es G_3 LALR(1)?
- (4) (2 p.) Dada la máquina de Turing de alfabeto de entrada {#,1} y tabla de transiciones

	#	1	b
q_0	$q_1\# \to$		
q_1		$q_11 \rightarrow$	$q_2b \leftarrow$
q_2	$q_5\# \leftarrow$	$q_3b \leftarrow$	
q_3	$q_4\# \leftarrow$	$q_31 \leftarrow$	
(q_4)			
$\overline{q_5}$			

- 1. Especificar su comportamiento.
- 2. Diseñar una máquina de Turing que, ante una cadena de la forma $\#1^n$, (y sólo ante éstas), se pare en un estado de aceptación dejando en la cinta x#, siendo x la codificación binaria de n.
- (5) (0'5 p.) Dado el código Pascal

```
procedure S;
begin
   if (preanalisis = 'a') or (preanalisis = 'b') then
       begin
            parea (preanalisis); S; R; parea ('d')
       end
   else if (preanalisis = 'd') or (preanalisis = '$') then
       begin
       end
   else
       begin
       error (* procedimiento de error, que detiene el análisis *)
       end
   end;
```

constrúyase una gramática sobre el alfabeto $\{a,b,c,d\}$ del que pudiera haber sido obtenido este procedimiento de análisis predictivo .

(1'5 p. y control de prácticas) Escríbase en Lex y Yacc código para conseguir un reconocedor de cadenas que estén balanceadas respecto a los dos tipos de paréntesis (,) y [,]. Por ejemplo, debe admitir (a)i(a[[a+b]]b[]) y ()[()()], y la cadena vacía, pero no [) ni ()[]

La entrada al reconocedor es una línea en la que se encuentra la expresión. La salida en el caso de que sea correcta es un mensaje ("Cadena equilibrada").