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Abstract

Every notion of depth induces a stratification of the plane in regions of points with the same
depth with respect to a given set of points. The boundaries of these regions, also known as depth-
contours, are an appropriate tool for data visualization and have already been studied for some
depths like Tukey depth [5, 7, 8, 9] and Delaunay depth [3, 6]. The contours also have applications
in quality illumination as is the case of good α-illumination [2]. The first α-depth contour is also
known as the α-embracing contour. We prove that the first α-depth contour has linear size and
we give an algorithm to compute it in O(n2) running time and O(n) space.

1 Introduction and Related Work

Data depth has been considered as a measure to check how deep or central a given point is with
respect to a multivariate distribution. A notion of depth induces a stratification of the plane in regions
of points that share their depth with respect to a given set of points. The boundaries of these regions
are called depth-contours and they are used as a tool for data visualization since they provide a quick
and informative overview of the shape and properties of the point set. Several different notions of
depth have been studied, for example, the location depth (also known by halfspace depth or Tukey
depth [9]) and Delaunay depth [6]. The Tukey depth measures how many points of a given set can be
separated from a point q by means of a half-plane. One can consider other ways to separate a point,
choosing the best to fit a certain application. Next we define the depth used in this paper, the α-depth.

Definition 1.1. Let S be a set of n points in the plane. A point q in the plane has α-depth k with
respect to S if every open wedge of angle α, with apex at q, contains at least k points of S and there
is at least one such wedge containing exactly k points.
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Figure 1: (a) Point q has Tukey depth equal to 3 and π-depth equal to 2 because we are considering
open wedges. (b) Point q has α-depth equal to 1. (c) The α-arc of ab associated to the line segment
sksk+1, where sksk+1 is an edge of the CH(S).

If we were to consider the points on the border of the wedge, then the α-depth would be a genera-
lization of the Tukey depth. The wedge would be seen as a way to separate q instead of a half-plane.
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†Dep. de Matemàtica Aplicada IV, Universitat Politècnica de Catalunya, partially supported by projects MEC
MTM2006-01267 and Gen. Cat. 2005SGR00692 merce@ma4.upc.edu
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For example, considering closed α-wedges for α = π, the α-depth corresponds to the Tukey depth
(see Figure 1(a)). However, for the purpose of this paper, this definition considers open α-wedges
(see Figure 1(b)). A main concern in current theoretical research on data depth is to compute depth
contours. The Tukey depth contours have been studied and calculated in [5, 7, 8]. The Delaunay
depth contours have also be studied in [3]. The contours have applications in quality illumination too,
for example, they can be applied to good illumination [1, 2] as we can see in the following. In this
paper, we focus on the construction of the first α-depth contour that is also known as the α-embracing
contour.

The good α-illumination [2] is a generalization of the 1-good illumination [1]. A point p in the plane
is well α-illuminated by a set S of n point lights if there is, at least, one light interior to each wedge
centered at p with a given angle α. According to the definition of α-depth, points well α-illuminated
have α-depth greater or equal to 1. In the 1-good illumination, the convex hull separates the points
that are 1-well illuminated from those which are not. The border of the convex hull is a contour that
acts as a barrier between the 1-well illuminated points and the rest. A similar structure for the good
α-illumination is called the α-embracing contour or the first α-depth contour and is defined next.

Definition 1.2. Let S be a set of n points in the plane and α a given angle (0 ≤ α ≤ π). The
α-embracing contour of S is the border of the region of points in the plane which are well α-illuminated.

We are going to prove that the α-embracing contour is composed by arcs of circumferences. The
α-arcs defined in the following definition are the key to the α-embracing contour construction.

Definition 1.3. Let S be a set of n points in the plane, p and q two consecutive vertices of the convex
hull of S and a, b ∈ S. The locus of points in the plane that see the line segment ab with a given angle
α is composed by two arcs of circumferences with extreme points a and b. If ab is not perpendicular
to pq, we call one of these two arcs the α-arc of ab with respect to pq: the one which is above the line
containing a and b, if we consider a coordinate system in which p and q belong to the x-axis and the
points of S have non negative y-coordinate. Such arc will be denoted by âb.

There is an example of Definition 1.3 in Figure 1(c). In this paper we will prove that the α-embracing
contour consists on a linear number of pieces of α-arcs. There is an example of this structure in Figure
2(b) and it also proves the next property.
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Figure 2: (a) Only the points in the two grey areas are well π
2 -illuminated. (b) The π

2 -embracing
contour of the set S which is not connected.

Proposition 1.4. The α-embracing contour of a set S is not necessarily connected.

In the next section we study the α-embracing contour. We prove that it has linear size and show
how to compute it in quadratic time and linear space.

2 Construction of the α-embracing contour

This section is devoted to the construction of the first α-depth contour that will be called α-embracing
contour from now on. Let S be a set of n points in the plane and α a given angle. The construction
of the α-embracing contour is based on the next lemmas.

Lemma 2.1. If two α-arcs associated with the same convex hull edge have a common extreme point
si ∈ S and intersect at v 6= si then v is collinear with the other two extremes of the α-arcs.



Proof. Every point on an α-arc is the apex of an α-wedge such that each ray goes through an extreme
point of the corresponding arc. If two α-arcs associated with the same convex hull edge have a common
extreme point si ∈ S and intersect at v 6= si (see Figure 3 (a)), then the wedge with apex at v and one
ray through si and the other through any of the other extreme points of the two α-arcs is an α-wedge.
Then v and the extreme points of the α-arcs different from si are collinear.
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Figure 3: (a) The α-arcs ŝisj and ŝisk intersect at v and v, sj and sk are collinear. (b) The wedge w
has an angle bigger than α only when mj is an interior point to w. (c) The pieces of the α-arcs from
mi to an extreme of M l

mi
up to the first intersection with another arc are ordered according to those

extremes.

Let Msksk+1 = {m1, . . . , ms} be a set of unoriented α-maxima points of S (points of S that allow an
empty α-wedge centered at them and can be computed by an algorithm by Avis et. al [4]) enclosed in
the region delimited by the line segment sksk+1 and the α-arc ŝksk+1, where m1 = sk and ms = sk+1.
For every point mi consider the perpendicular line to sksk+1 through mi and the partition of the set
Msksk+1 \ {mi} in M l

mi
and Mr

mi
. The set M l

mi
(Mr

mi
) contains the points on the left (right) of the

perpendicular line. Let mi
f ∈ M l

mi
be the first point around mi in clockwise order and mi

l ∈ Mr
mi

the
last.

Lemma 2.2. Let mi ∈ Msksk+1 be a vertex of the α-embracing contour. From this vertex, the following
pieces of the α-arcs that are part of the α-embracing contour are:

1. the piece of the α-arc m̂imi
f from mi (i 6= 1) up to the first intersection with another α-arc that

has one of its extreme points in M l
mi

2. the piece of the α-arc m̂imi
l from mi (i 6= s) up to the first intersection with another α-arc that

has one of its extreme points in Mr
mi

.

Proof. Let mj and mj′ be two points of M l
mi

, mj is first in clockwise order around mi (similar
arguments hold for two points of Mr

mi
).

Any wedge w with apex at a point of m̂imj and with one ray through mi and the other through
mj′ has an angle bigger than α if and only if that wedge contains mj in its interior. This situation
happens when the wedge apex and mi are in the same half-plane defined by the support line through
mjmj′ (see Figure 3(b)). That is, since mj , mj′ and m̂imj ∩ m̂imj′ are collinear by Lemma 2.1, if
the apex of a wedge lies at a point of the piece of the arc m̂imj from mi up to m̂imj ∩ m̂imj′ and it
has one ray through mi and the other through mj′ , its angle is bigger than α. Therefore the apex of
an α-wedge with a ray through mi and the other through mj′ must be out of the region enclosed by
mimj′ and m̂imj .

If there is not an intersection m̂imj and m̂imj′ , the arc m̂imj appears first in the clockwise order
around mi. The same happens when the two arcs intersect, m̂imj is still the first to appear from mi

up to their intersection point. If another α-arc not having mi as an extreme point cuts m̂imj and
m̂imj′ on points of the pieces of the α-arcs from mi up to m̂imj ∩ m̂imj′ , then the pieces from mi up
to this new cut have the same order than the previous pieces.

The pieces of the α-arcs from mi to an extreme of the same subset (M l
mi

or Mr
mi

) up to the first
intersection with some arc are ordered according to those extremes (see Figure 3(c)). Then if mi



is a vertex of the α-embracing contour, only the pieces of the arcs m̂imi
f and m̂imi

l are part of the
embracing contour. The pieces of these two arcs from mi are only part of the embracing contour until
they intersect with another arc with an extreme in the same set (M l

mi
for m̂imi

f and Mr
mi

for m̂imi
l).

This is only true up to the first intersection because the order of the arcs swaps there.

Let Lsksk+1 be the set of lines connecting mi and mi
f and mi and mi

l, for every point mi ∈ Msksk+1 .

Lemma 2.3. A vertex of the α-embracing contour is either a point of a line of Lsksk+1 or an inter-

section point between m̂imi
f and m̂imi

l for some mi ∈ Msksk+1 . Furthermore, every line of Lsksk+1

contains one vertex of the first contour that does not belong to Msksk+1 .

Proof. First we prove that all the vertices of the α-embracing contour lie on a line of Lsksk+1 or they

are an intersection between m̂imi
f and m̂imi

l for some mi ∈ Msksk+1 .
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Figure 4: In both figures the α-embracing contour is represented in a solid trace. (a) The point mi is
not a vertex of the α-embracing contour but the intersection of the arcs m̂imi

f and m̂imi
l is. There

are two other vertices that lie on two lines of Lsksk+1 and are the result of the intersection of the two

previous arcs with the arc m̂i
fmi

l. (b) The point mi is a vertex of the α-embracing contour and there
are two other vertices that lie on two lines of Lsksk+1 and are the result of the intersection of the two

previous arcs with the arc m̂i
fmi

l.

By the definition of the set Lsksk+1 , all the points of Msksk+1 lie on some line of the set Lsksk+1

and they are possible vertices of the first contour since they are unoriented α-maxima [4]. If the α-arcs
m̂imi

f and m̂imi
l intersect each other, that means that there is an empty α-wedge whose apex is at

one of the arcs from mi up to some intersection point, vf of vl, with some other arc (vf for the arc
with the extreme point mi

f and vl for the other). The α-wedge apex can only be located at any piece

of the arc m̂imi
f (m̂imi

l) from mi to vf (vl). The α-wedge is empty when its apex is located at the
intersection of both arcs, vi. If the apex moves upwards along −−→mivi then one of the extremes of the
arcs will become an interior point of the α-wedge. So the point where the apex is located no longer
is a point of the α-embracing contour. If the apex moves on the opposite direction, then the empty
wedge has an angle bigger than α, so vi is a vertex of the embracing contour. By Lemma 2.2, the arcs
m̂imi

f and m̂imi
l are also part of the embracing contour (see Figure 4).

Suppose that there are other vertices of the α-embracing contour different from the points of
Msksk+1 and that are not intersections between m̂imi

f and m̂imi
l for some mi ∈ Msksk+1 . We will see

that these vertices are points of some line of Lsksk+1 and are located at the intersection of the α-arcs
with extreme points of the set Msksk+1 . Moreover these arcs have a common extreme. On the contrary,
suppose that the vertex of the α-embracing contour is an intersection point between two α-arcs without
a common extreme. Since these arcs cross, then the α-wedge with apex in this intersection point and
a ray through one extreme of one of the arcs contains a point. This interior point is an extreme of the
other arc. In this case, the α-wedge is not empty which contradicts the fact that it is a vertex of the
α-embracing contour.
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Figure 5: The line connecting mi and mi
f cuts the α-arc m̂imj in a vertex of the α-embracing contour.

The line connecting mj and mj
l cuts α-arc m̂imj in another vertex.

Hence we can suppose that a vertex of the α-embracing contour is an intersection point between
two α-arcs with a common extreme. Applying Lemma 2.1, the intersection between these arcs is
collinear with the other two extreme points of the arcs. Now we show that one of these two points is
the first or the last in clockwise order around the other. In Figure 5, we can see an example where
mj

l is the last point in clockwise order around mj and mi
f is the first in clockwise order around mi.

Otherwise, consider the α-wedge apex at the vertex of the embracing contour (the intersection point
of the arcs). One of its rays goes through the common extreme of the arcs and the other goes through
the two extremes that are collinear with the vertex. If one of the extremes were not the first or the
last around the other, then it would have to be interior to the α-wedge. This contradicts the fact that
the α-wedge apex is a vertex of the embracing contour. So the vertex lies on a line connecting two
points of Msksk+1 , where one of them is the last or the first in clockwise order around the other. That
is, the vertex lies on a line of Lsksk+1 .
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Figure 6: The line mjm
j
l cuts the intersection between m̂imj and m̂im

j
l and it also cuts the intersection

between m̂jmi
f and m̂j

l m
i
f . These α-arcs share an extreme point (mi in the first case and mi

f in the
second) while the other extremes are mj and mj

l . The first of these two cuts is a vertex of the
α-embracing contour.

So now we prove that every line of Lsksk+1 contains a vertex of the α-embracing contour that does
not belong to Msksk+1 . Let a line of Lsksk+1 be defined by mj and mj

l (analogously mj and mj
f ). Let

us compute the cuts between this line and the intersection points between two α-arcs with extremes
in Msksk+1 (see Figure 6). These cuts are intersection points between pairs of α-arcs with a common
extreme point, while the other extreme points are mj and mj

l .

Consider the closest of these cuts to sksk+1, as long as they are different from mj and mj
l . Next we

prove that if we choose this cut to locate the α-wedge apex with one ray through the common extreme



of the arcs, mi, and the other through mj (or mj
l since they are collinear), then this α-wedge is empty.

Otherwise suppose that mk is an interior point of the wedge. Note that by definition, mk cannot be
after mj

l in the clockwise order around mj . Then both m̂jmi and m̂jmk have an extreme in M l
mj

. By
construction, the α-wedge apex is located at the closest cut to sksk+1. The apex is at the intersection
between the line mjm

j
l and the intersection between the two α-arcs. Then the intersection between

the α-arcs m̂kmj and m̂kmj
l is located along the line mjm

j
l by Lemma 2.1 (see Figure 7). However

the intersection point of these two α-arcs is closer to sksk+1 than the wedge apex. This contradicts
the fact that the wedge apex is the closest point to sksk+1. So the α-wedge is empty when located at

the closest cut to sksk+1. If we move the wedge apex from the intersection point along
−−−→
mj

l mj then one
extreme point of the arcs becomes an interior point to the wedge. If we move the apex on the opposite
direction, then the empty wedge has an angle bigger than α. That is, the closest cut to sksk+1 is
a vertex of the α-embracing contour. So every line of Lsksk+1 contains a vertex of the α-embracing
contour that does not belong to Msksk+1 .
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Figure 7: The intersection of the α-arcs m̂kmj and m̂kmj
l is located along the line mjm

j
l .
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Figure 8: Every line of Lsksk+1 contains a vertex of the α-embracing contour. In this example we can
see the different kinds of vertices that appear in the α-embracing contour.

Proposition 2.4. The α-embracing contour of a set S of n points has linear complexity.

Proof. The α-embracing contour restricted to an edge sksk+1 of the CH(S) is a connected chain of
α-arcs. As consequence of Lemma 2.3, we have seen that the vertices of the α-embracing contour
restricted to sksk+1 can only be of three kinds: points of Msksk+1 , intersection points between the first
and the last α-arcs around some point of Msksk+1 or points lying on lines of Lsksk+1 (see Figure 8).
The cardinal of the set Lsksk+1 is twice the cardinal of the set Msksk+1 . The union of the sets Msksk+1

is the set of all the unoriented α-maxima points of S, which has O(n) points. So the α-embracing
contour has linear complexity.

Next we present a quadratic algorithm to compute the α-embracing contour based on the previous
lemmas.



Algorithm 2.5. Construction of the α-embracing contour of S.

Input: Set of points S in non-degenerate position and an angle α, 0 < α ≤ π.

Output: The α-embracing contour of S.

1. Compute the angular order of each point of S with respect to all of the others.

2. Compute CH(S). Let {s1, . . . , sn1} ⊆ S be the set of the points on the border of CH(S).

3. Compute the unoriented α-maxima points using the algorithm by Avis et al. [4].

4. For every segment sksk+1, compute the associated α-arc
a

sksk+1.

5. Associate the set of unoriented α-maxima points that are in the enclosed region delimited by
sksk+1 and

_
sksk+1 to every line segment sksk+1. Let Msksk+1 be that set of points.

6. For every point mi ∈ Msksk+1 , consider the first and last points of Msksk+1 \ {mi} in clockwise
order around mi. Construct the set of lines Lsksk+1 , connecting each point mi to the first and
last points around it. (Note that the last point around sk is sk+1 and the first around sk+1 is
sk).

7. For every point mi ∈ Msksk+1 , construct the first and the last α-arcs from mi up to the first
intersection with some line of the set Lsksk+1 .

8. If the chain of α-arcs just constructed is connected, then it is the α-embracing contour of S. If
the chain of α-arcs is disconnected, suppose that the α-arc from mi is disconnected. So this α-arc
intersects a line of Lsksk+1 . Take the point mj ∈ Msksk+1 that lies on that line and is not an
extreme point of the previous α-arc. Construct the α-arc m̂imj up to the first intersection with
some other line of the set Lsksk+1 (if it exists). Repeat this process recursively until a connected
chain of arcs is achieved.

As a consequence of the preceding paragraphs, we can state the following.

Theorem 2.6. The α-embracing contour of a set S of n points in the plane can be constructed in
O(n2) time in the worst case and O(n) space.

3 Conclusions and Future Work

We introduced the notion of α-depth and the first α-depth contour, also known as the α-embracing
contour, as the contour that separates points in the plane that are well α-illuminated from the rest.
We proved that the α-embracing contour consists on a linear number of pieces of α-arcs and presented
an algorithm to compute the α-embracing contour of a point set in the plane that runs in O(n2) time
and O(n) space.

The study of all the α-depth contours and their properties is ongoing work, as well as the comparison
between the α-depth contours and other depth contours.
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